- Wang J-H, Cheng L, Wang C-H, Ling W-S, Wang S-W, Lee G-B (2013) An integrated chip
capable of performing sample pretreatment and nucleic acid amplification for HIV-1 detection.
Biosens Bioelectron 41:484–491. doi:10.1016/j.bios.2012.09.011 - Jung H-C, Moon J-H, Baek D-H, Lee J-H, Choi Y-Y, Hong J-S et al (2012) CNT/PDMS
composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans Biomed Eng
59:1472–1479. doi:10.1109/TBME.2012.2190288 - Tsao C-W, DeVoe DL (2008) Bonding of thermoplastic polymer microfluidics. Microfluid
Nanofluidics 6:1–16. doi:10.1007/s10404-008-0361-x - Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of
PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip
7:499–505. doi:10.1039/b618901f - Yang W, Sun X, Wang H-Y, Woolley AT (2009) Integrated microfluidic device for serum
biomarker quantitation using either standard addition or a calibration curve. Anal Chem
81:8230–8235. doi:10.1021/ac901566s - Chen D, Mauk M, Qiu X, Liu C, Kim J, Ramprasad S et al (2010) An integrated, self-contained
microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed
Microdevices 12:705–719. doi:10.1007/s10544-010-9423-4 - Yu H, Chong ZZ, Tor SB, Liu E, Loh NH (2015) Low temperature and deformation-free
bonding of PMMA microfluidic devices with stable hydrophilicity via oxygen plasma treat-
ment and PVA coating. RSC Adv 5:8377–8388. doi:10.1039/C4RA12771D - Bartolo D, Degre ́G, Nghe P, Studer V (2008) Microfluidic stickers. Lab Chip 8:274–279.
doi:10.1039/b712368j - Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in
controlled release. Adv Drug Deliv Rev 11:1–35. doi:10.1016/0169-409X(93)90025-Y - Fotin AV, Drobyshev AL, Proudnikov DY, Perov AN, Mirzabekov AD (1998) Parallel
thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips. Nucleic
Acids Res 26:1515–1521. http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid¼147416&tool¼pmcentrez&rendertype¼abstract. Accessed 23 Mar 2016 - Pevzner PA, Lysov YP, Khrapko KR, Belyavsky AV, Florentiev VL, Mirzabekov AD (1991)
Improved chips for sequencing by hybridization. J Biomol Struct Dyn 9:399–410. doi:10.1080/
07391102.1991.10507920 - Heo J, Crooks RM (2005) Microfluidic biosensor based on an array of hydrogel-entrapped
enzymes. Anal Chem 77:6843–6851. doi:10.1021/ac0507993 - Cheng C-J, Chu L-Y, Zhang J, Wang H-D, Wei G (2008) Effect of freeze-drying and
rehydrating treatment on the thermo-responsive characteristics of poly
(N-isopropylacrylamide) microspheres. Colloid Polym Sci 286:571–577. doi:10.1007/
s00396-007-1817-3 - Beebe D, Moore J, Bauer J, Yu Q, Liu R, Devadoss C et al (2000) Functional hydrogel
structures for autonomous flow control inside microfluidic channels. Nature 404:588–590.
doi:10.1038/35007047 - Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for
inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46:1318–1320.
doi:10.1002/anie.200603817 - Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status
and future trends. Biomicrofluidics 6:11301–1130113. doi:10.1063/1.3687398 - Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection
in paper-based microfluidic sensors. Anal Chem 83:1300–1306. doi:10.1021/ac102392t - Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper:
an inexpensive microfluidic platform. Lab Chip 11:1161–1165. doi:10.1039/c0lc00512f
164 P. Manickam et al.