Computational Drug Discovery and Design

(backadmin) #1
Takahashi I, Iwasawa Y, Hayama T,
Nishimura S, Morishima H (2001) Structure-
based generation of a new class of potent Cdk4
inhibitors: new de novo design strategy and
library design. J Med Chem 44
(26):4615–4627


  1. Grzybowski BA, Ishchenko AV, Kim CY,
    Topalov G, Chapman R, Christianson DW,
    Whitesides GM, Shakhnovich EI (2002) Com-
    binatorial computational method gives new
    picomolar ligands for a known enzyme. Proc
    Natl Acad Sci U S A 99(3):1270–1273.
    https://doi.org/10.1073/pnas.032673399

  2. Schneider G (2002) Trends in virtual combina-
    torial library design. Curr Med Chem
    9:2095–2101

  3. Dobson CM (2004) Chemical space and biol-
    ogy. Nature 432:824–828

  4. Lipinski C, Hopkins A (2004) Navigating
    chemical space for biology and medicine.
    Nature 432:855–861

  5. Richardson JS, Richardson DC (1989) The de
    novo design of protein structures. Trends Bio-
    chem Sci 14:304–309

  6. Richardson JS (1992) Looking at proteins:
    representations, folding, packing, and design.
    Biophys J 63:1185–1209

  7. Bohm HJ, Flohr A, Stahl M (2004) Scaffold
    hopping. Drug Discov Today Technol 1
    (3):217–224. https://doi.org/10.1016/j.
    ddtec.2004.10.009

  8. Renner S, Schneider G (2006) Scaffold-
    hopping potential of ligand-based similarity
    concepts. ChemMedChem 1(2):181–185.
    https://doi.org/10.1002/cmdc.200500005

  9. Mauser H, Guba W (2008) Recent develop-
    ments in de novo design and scaffold hopping.
    Curr Opin Drug Discov Devel 11(3):365–374

  10. Langdon SR, Ertl P, Brown N (2010) Bioisos-
    teric replacement and scaffold hopping in lead
    generation and optimization. Mol Inform 29
    (5):366–385.https://doi.org/10.1002/minf.
    201000019

  11. Loving K, Alberts I, Sherman W (2010)
    Computational approaches for fragment-
    based and de novo design. Curr Top Med
    Chem 10(1):14–32

  12. Schneider G, Fechner U (2005) Computer-
    based de novo design of drug-like molecules.
    Nat Rev Drug Discov 4(8):649–663

  13. Katiyar SP, Bakkiyaraj D, Karutha Pandian S
    (2011) Role of aromatic stack pairing at the
    catalytic site of gelonin protein. Biochem Bio-
    phys Res Commun 410(1):75–80.https://doi.
    org/10.1016/j.bbrc.2011.05.107

  14. Shacham S, Marantz Y, Bar-Haim S, Kalid O,
    Warshaviak D, Avisar N, Inbal B, Heifetz A,


Fichman M, Topf M, Naor Z, Noiman S,
Becker OM (2004) PREDICT modeling and
in-silico screening for G-protein coupled
receptors. Proteins 57(1):51–86.https://doi.
org/10.1002/prot.20195


  1. Hillisch A, Pineda LF, Hilgenfeld R (2004)
    Utility of homology models in the drug discov-
    ery process. Drug Discov Today 9
    (15):659–669. https://doi.org/10.1016/
    S1359-6446(04)03196-4

  2. Dhanjal JK, Sreenidhi AK, Bafna K, Katiyar SP,
    Goyal S, Grover A, Sundar D (2015) Compu-
    tational structure-based de novo design of
    hypothetical inhibitors against the anti-
    inflammatory target COX-2. PLoS One 10
    (8):e0134691.https://doi.org/10.1371/jour
    nal.pone.0134691

  3. Fechner U, Schneider G (2006) Flux (1): a
    virtual synthesis scheme for fragment-based
    de novo design. J Chem Inf Model 46
    (2):699–707. https://doi.org/10.1021/
    ci0503560

  4. Lloyd DG, Buenemann CL, Todorov NP,
    Manallack DT, Dean PM (2004) Scaffold hop-
    ping in de novo design. Ligand generation in
    the absence of receptor information. J Med
    Chem 47(3):493–496. https://doi.org/10.
    1021/jm034222u

  5. Pasha FA, Muddassar M, Beg Y, Cho SJ (2008)
    DFT-based de novo QSAR of phenoloxidase
    inhibitors. Chem Biol Drug Des 71
    (5):483–493. https://doi.org/10.1111/j.
    1747-0285.2008.00651.x

  6. Goodford PJ (1985) A computational proce-
    dure for determining energetically favorable
    binding sites on biologically important macro-
    molecules. J Med Chem 28(7):849–857

  7. Miranker A, Karplus M (1991) Functionality
    maps of binding sites: a multiple copy simulta-
    neous search method. Proteins 11(1):29–34.
    https://doi.org/10.1002/prot.340110104

  8. Bohm HJ (1992) LUDI: rule-based automatic
    design of new substituents for enzyme inhibi-
    tor leads. J Comput Aided Mol Des 6
    (6):593–606

  9. Mills JE, Dean PM (1996) Three-dimensional
    hydrogen-bond geometry and probability
    information from a crystal survey. J Comput
    Aided Mol Des 10(6):607–622

  10. Pearlman DA (1999) Free energy grids: a prac-
    tical qualitative application of free energy per-
    turbation to ligand design using the OWFEG
    method. J Med Chem 42(21):4313–4324

  11. Halgren TA (2009) Identifying and character-
    izing binding sites and assessing druggability. J
    Chem Inf Model 49(2):377–389.https://doi.
    org/10.1021/ci800324m


142 Shashank P. Katiyar et al.

Free download pdf