Computational Drug Discovery and Design

(backadmin) #1

  1. Lipinski CA, Lombardo F, Dominy BW, Fee-
    ney PJ (2001) Experimental and computa-
    tional approaches to estimate solubility and
    permeability in drug discovery and develop-
    ment settings. Adv Drug Deliv Rev 46
    (1–3):3–26

  2. Kumar R, Sharma A, Varadwaj PK (2011) A
    prediction model for oral bioavailability of
    drugs using physicochemical properties by sup-
    port vector machine. J Nat Sci Biol Med 2
    (2):168–173. https://doi.org/10.4103/
    0976-9668.92325

  3. Clark DE, Frenkel D, Levy SA, Li J, Murray
    CW, Robson B, Waszkowycz B, Westhead DR
    (1995) PRO-LIGAND: an approach to de
    novo molecular design. 1. Application to the
    design of organic molecules. J Comput Aided
    Mol Des 9(1):13–32

  4. Pellegrini E, Field MJ (2003) Development
    and testing of a de novo drug-design algo-
    rithm. J Comput Aided Mol Des 17
    (10):621–641

  5. Lewis RA (1990) Automated site-directed
    drug design: approaches to the formation of
    3D molecular graphs. J Comput Aided Mol
    Des 4(2):205–210

  6. Nishibata Y, Itai A (1991) Automatic creation
    of drug candidate structures based on receptor
    structure. Starting point for artificial lead gen-
    eration. Tetrahedron 47(43):8985–8990.
    https://doi.org/10.1016/S0040-4020(01)
    86503-0

  7. Yuan Y, Pei J, Lai L (2011) LigBuilder 2: a
    practical de novo drug design approach. J
    Chem Inf Model 51(5):1083–1091.https://
    doi.org/10.1021/ci100350u

  8. Schneider G, Lee ML, Stahl M, Schneider P
    (2000) De novo design of molecular architec-
    tures by evolutionary assembly of drug-derived
    building blocks. J Comput Aided Mol Des 14
    (5):487–494

  9. Globus A, Lawton J, Wipke T (1999) Auto-
    matic molecular design using evolutionary
    techniques. Nanotechnology 10(3):290–299

  10. Luo Z, Wang R, Lai L (1996) RASSE: a new
    method for structure-based drug design. J
    Chem Inf Comput Sci 36(6):1187–1194

  11. Nachbar RB (2000) Molecular evolution:
    automated manipulation of hierarchical chemi-
    cal topology and its application to average
    molecular structures. Genet Program Evol
    Mach 1(1–2):57–94. https://doi.org/10.
    1023/a:1010072431120

  12. Moore W Jr (2005) Maximizing discovery effi-
    ciency with a computationally driven fragment
    approach. Curr Opin Drug Discov Devel 8
    (3):355–364
    46. Mohamadi F, Richards NG, Guida WC,
    Liskamp R, Lipton M, Caufield C, Chang G,
    Hendrickson T, Still WC (1990) MacroMo-
    del—an integrated software system for model-
    ing organic and bioorganic molecules using
    molecular mechanics. J Comput Chem 11
    (4):440–467
    47. Weiner SJ, Kollman PA, Case DA, Singh UC,
    Ghio C, Alagona G, Profeta S, Weiner P (1984)
    A new force field for molecular mechanical
    simulation of nucleic acids and proteins. J Am
    Chem Soc 106(3):765–784
    48. Ludington J, Fujimoto T, Hollinger F (2004)
    Determining partial atomic charges for frag-
    ments used in de novo drug design. Paper pre-
    sented at the American Chemical Society,
    Washington, DC
    49. Clark M, Guarnieri F, Shkurko I, Wiseman J
    (2006) Grand canonical Monte Carlo simula-
    tion of ligandprotein binding. J Chem Inf
    Model 46(1):231–242
    50. Clark M, Meshkat S, Talbot GT, Carnevali P,
    Wiseman JS (2009) Fragment-based computa-
    tion of binding free energies by systematic sam-
    pling. J Chem Inf Model 49(8):1901–1913
    51. Moffett K, Konteatis Z, Nguyen D, Shetty R,
    Ludington J, Fujimoto T, Lee K-J, Chai X,
    Namboodiri H, Karpusas M (2011) Discovery
    of a novel class of non-ATP site DFG-out state
    p38 inhibitors utilizing computationally
    assisted virtual fragment-based drug design
    (vFBDD). Bioorg Med Chem Lett 21
    (23):7155–7165
    52. Frisch MJ, Trucks GW, Schlegel HB, Gill
    PMW, Johnson BG, Robb MA, Cheeseman
    MJR, Keith TA, Petersson GA, Montgomery
    JA, Raghavachari K, Al-Laham MA, Zakr-
    zewski VG, Ortiz JV, Foresman JB,
    Ciosloswki J, Stefanof BB, Nanayakkara A,
    Challacombe M, Peng CY, Ayala PY, Chen W,
    Wong MW, Andres JL, Replogle ES,
    Gomperts R, Martin RL, Fox DJ, Binkley JS,
    Defrees DJ, Baker J, Stewart JP, Head-
    Gordon M, Gonzalez C, Pople JA (1998)
    Gaussian 98, revision a. 7. Gaussian. Inc, Pitts-
    burgh, PA
    53. Hariharan PC, Pople JA (1973) The influence
    of polarization functions on molecular orbital
    hydrogenation energies. Theoretica Chimica
    Acta 28(3):213–222
    54. Becke AD (1988) Density-functional
    exchange-energy approximation with correct
    asymptotic behavior. Phys Rev A 38
    (6):3098–3100
    55. Bernstein FC, Koetzle TF, Williams GJ, Meyer
    EF, Brice MD, Rodgers JR, Kennard O,
    Shimanouchi T, Tasumi M (1977) The protein
    data bank. Eur J Biochem 80(2):319–324


Fragment-Based Ligand Designing 143
Free download pdf