Computational Drug Discovery and Design

(backadmin) #1

  1. Mobley DL, Dill KA (2009) Binding of small-
    molecule ligands to proteins: “what you see” is
    not always “what you get”. Structure
    17:489–498. https://doi.org/10.1016/j.str.
    2009.02.010

  2. Wong SE, Lightstone FC (2011) Accounting
    for water molecules in drug design. Expert
    Opin Drug Discov 6:65–74.https://doi.org/
    10.1517/17460441.2011.534452

  3. Corbeil CR, Moitessier N (2009) Docking
    ligands into flexible and solvated macromole-
    cules. 3. Impact of input ligand conformation,
    protein flexibility, and water molecules on the
    accuracy of docking programs. J Chem Inf
    Model 49:997–1009. https://doi.org/10.
    1021/ci8004176

  4. Limongelli V, Marinelli L, Cosconati S, La
    Motta C, Sartini S, Mugnaini L et al (2012)
    Sampling protein motion and solvent effect
    during ligand binding. Proc Natl Acad Sci U
    S A 109:1467–1472. https://doi.org/10.
    1073/pnas.1112181108

  5. Therrien E, Weill N, Tomberg A, Corbeil CR,
    Lee D, Moitessier N (2014) Docking ligands
    into flexible and solvated macromolecules.
    7. Impact of protein flexibility and water mole-
    cules on docking-based virtual screening accu-
    racy. J Chem Inf Model 54:3198–3210.
    https://doi.org/10.1021/ci500299h

  6. Zhao S, Goodsell DS, Olson AJ (2001) Analy-
    sis of a data set of paired uncomplexed protein
    structures: new metrics for side-chain flexibility
    and model evaluation. Proteins Struct Funct
    Genet 43:271–279

  7. Boehr DD, Nussinov R, Wright PE (2009) The
    role of dynamic conformational ensembles in
    biomolecular recognition. Nat Chem Biol
    5:789–796. https://doi.org/10.1038/
    nchembio.232

  8. Najmanovich RJ, Kuttner J, Sobolev V, Edel-
    man M (2000) Side-chain flexibility in proteins
    upon ligand binding. Proteins Struct Funct
    Genet 39:261–268

  9. Gaudreault F, Chartier M, Najmanovich RJ
    (2012) Side-chain rotamer changes upon
    ligand binding: common, crucial, correlate
    with entropy and rearrange hydrogen bonding.
    Bioinformatics 28:i423–i430. https://doi.
    org/10.1093/bioinformatics/bts395

  10. Gaudreault F, Najmanovich RJ (2015) Flex-
    AID: revisiting docking on non-native-com-
    plex structures. J Chem Inf Model
    55:1323–1336. https://doi.org/10.1021/
    acs.jcim.5b00078

  11. Frappier V, Najmanovich RJ (2014) A coarse-
    grained elastic network atom contact model
    and its use in the simulation of protein


dynamics and the prediction of the effect of
mutations. PLoS Comput Biol 10:e1003569.
https://doi.org/10.1371/journal.pcbi.
1003569


  1. Wang R, Fang X, Lu Y, Yang C-Y, Wang S
    (2005) The PDBbind database: methodologies
    and updates. J Med Chem 48:4111–4119.
    https://doi.org/10.1021/jm048957q

  2. Trott O, Olson AJ (2010) AutoDock Vina:
    improving the speed and accuracy of docking
    with a new scoring function, efficient optimiza-
    tion, and multithreading. J Comput Chem
    31:455–461. https://doi.org/10.1002/jcc.
    21334

  3. Rarey M, Kramer B, Lengauer T, Klebe G
    (1996) A fast flexible docking method using
    an incremental construction algorithm. J Mol
    Biol 261:470–489.https://doi.org/10.1006/
    jmbi.1996.0477

  4. Ruiz-Carmona S, Alvarez-Garcia D,
    Foloppe N, Garmendia-Doval AB, Juhos S,
    Schmidtke P et al (2014) rDock: a fast, versatile
    and open source program for docking ligands
    to proteins and nucleic acids. PLoS Comput
    Biol 10(4):e1003571. https://doi.org/10.
    1371/journal.pcbi.1003571

  5. Gaudreault F, Morency L-P, Najmanovich RJ
    (2015) NRGsuite: a PyMOL plugin to per-
    form docking simulations in real time using
    FlexAID. Bioinformatics 31:3856–3858.
    https://doi.org/10.1093/bioinformatics/
    btv458

  6. Letourneau D, Lorin A, Lefebvre A,
    Frappier V, Gaudreault F, Najmanovich R
    et al (2012) StAR-related lipid transfer domain
    protein 5 binds primary bile acids. J Lipid Res
    53(12):2677–2689. https://doi.org/10.
    1194/jlr.M031245

  7. Ducheˆne D, Colombo E, De ́silets A, Bou-
    dreault P-L, Leduc R, Marsault E et al (2014)
    Analysis of subpocket selectivity and identifica-
    tion of potent selective inhibitors for matrip-
    tase and matriptase-2. J Med Chem
    57:10198–10204.https://doi.org/10.1021/
    jm5015633

  8. Chartier M, Morency L-P, Zylber MI, Najma-
    novich RJ (2017) Large-scale detection of drug
    off-targets: hypotheses for drug repurposing
    and understanding side-effects. BMC Pharma-
    col Toxicol 18:1046. https://doi.org/10.
    1186/s40360-017-0128-7

  9. Seto JT, Rott R (1966) Functional significance
    of sialidose during influenza virus multiplica-
    tion. Virology 30:731–737

  10. Moscona A (2005) Neuraminidase inhibitors
    for influenza. N Engl J Med 353:1363–1373.
    https://doi.org/10.1056/NEJMra050740


Molecular Docking in Computational Drug Discovery and Design 387
Free download pdf