Computational Drug Discovery and Design

(backadmin) #1

  1. Copeland RA (2011) Conformational adapta-
    tion in drug-target interactions and residence
    time. Future Med Chem 3:1491–1501.
    https://doi.org/10.4155/fmc.11.112

  2. Teilum K, Olsen JG, Kragelund BB (2009)
    Functional aspects of protein flexibility. Cell
    Mol Life Sci 66:2231–2247.https://doi.org/
    10.1007/s00018-009-0014-6

  3. Antunes DA, Devaurs D, Kavraki LE (2015)
    Understanding the challenges of protein flexi-
    bility in drug design. Expert Opin Drug Discov
    10:1301–1313. https://doi.org/10.1517/
    17460441.2015.1094458

  4. Copeland RA, Pompliano DL, Meek TD
    (2006) Drug-target residence time and its
    implications for lead optimization. Nat Rev
    Drug Discov 5:730–739.https://doi.org/10.
    1038/nrd2082

  5. Swinney DC (2004) Biochemical mechanisms
    of drug action: what does it take for success?
    Nat Rev Drug Discov 3:801–808.https://doi.
    org/10.1038/nrd1500

  6. Copeland RA (2016) The drug-target resi-
    dence time model: a 10-year retrospective.
    Nat Rev Drug Discov 15:87–95.https://doi.
    org/10.1038/nrd.2015.18

  7. Schuetz DA, de Witte WEA, Wong YC et al
    (2017) Kinetics for drug discovery: an
    industry-driven effort to target drug residence
    time. Drug Discov Today 22:896–911.
    https://doi.org/10.1016/j.drudis.2017.02.
    002

  8. Palamini M, Canciani A, Forneris F (2016)
    Identifying and visualizing macromolecular
    flexibility in structural biology. Front Mol
    Biosci 3:47.https://doi.org/10.3389/fmolb.
    2016.00047

  9. Aci-Se`che S, Ziada S, Braka A et al (2016)
    Advanced molecular dynamics simulation
    methods for kinase drug discovery. Future
    Med Chem 8:545–566.https://doi.org/10.
    4155/fmc.16.9

  10. De Vivo M, Masetti M, Bottegoni G, Cavalli A
    (2016) Role of molecular dynamics and related
    methods in drug discovery. J Med Chem
    59:4035–4061. https://doi.org/10.1021/
    acs.jmedchem.5b01684

  11. Case DA, Cerutti DS, Cheatham TE et al
    (2017) AMBER 2017. University of Califor-
    nia, San Francisco

  12. Brooks BR, Brooks CL, Mackerell AD et al
    (2009) CHARMM: the biomolecular simula-
    tion program. J Comput Chem
    30:1545–1614. https://doi.org/10.1002/
    jcc.21287

  13. Phillips JC, Braun R, Wang W et al (2005)
    Scalable molecular dynamics with NAMD. J


Comput Chem 26:1781–1802. https://doi.
org/10.1002/jcc.20289


  1. Kumari R, Kumar R, Lynn A (2014)
    g_mmpbsa-A GROMACS tool for high-
    throughput MM-PBSA calculations. J Chem
    Inf Model 54:1951–1962. https://doi.org/
    10.1021/ci500020m

  2. Bowers KJ, Chow E, Xu H et al (2006) Scalable
    algorithms for molecular dynamics simulations
    on commodity clusters. In: Proceedings of the
    2006 ACM/IEEE conference on supercom-
    puting. ACM, New York, NY, USA

  3. Harvey MJ, Giupponi G, Fabritiis GD (2009)
    ACEMD: accelerating biomolecular dynamics
    in the microsecond time scale. J Chem Theory
    Comput 5:1632–1639. https://doi.org/10.
    1021/ct9000685

  4. BiKi Technologies s.r.l., Via XX Settembre,
    33/10, I-16121 Genova, Italy

  5. Shaw DE, Deneroff MM, Dror RO et al
    (2007) Anton, a special-purpose machine for
    molecular dynamics simulation. In: Proceed-
    ings of the 34th annual international sympo-
    sium on computer architecture. ACM,
    New York, NY, USA, pp 1–12

  6. Loukatou S, Papageorgiou L, Fakourelis P et al
    (2014) Molecular dynamics simulations
    through GPU video games technologies. J
    Mol Biochem 3:64–71

  7. Teodoro G, Kurc T, Kong J et al (2014) Com-
    parative performance analysis of Intel Xeon
    Phi, GPU, and CPU: a case study from micros-
    copy image analysis. IEEE Trans Parallel Dis-
    trib Syst 2014:1063–1072.https://doi.org/
    10.1109/IPDPS.2014.111

  8. RCSB Protein Data Bank – RCSB PDB.
    https://www.rcsb.org/pdb/home/home.do.
    Accessed 25 July 2017

  9. Shan Y, Kim ET, Eastwood MP et al (2011)
    How does a drug molecule find its target bind-
    ing site? J Am Chem Soc 133:9181–9183.
    https://doi.org/10.1021/ja202726y

  10. Piana S, Lindorff-Larsen K, Shaw DE (2013)
    Atomic-level description of ubiquitin folding.
    Proc Natl Acad Sci U S A 110:5915–5920.
    https://doi.org/10.1073/pnas.1218321110

  11. Sugita Y, Okamoto Y (1999) Replica-exchange
    molecular dynamics method for protein fold-
    ing. Chem Phys Lett 314:141–151.https://
    doi.org/10.1016/S0009-2614(99)01123-9

  12. Torrie GM, Valleau JP (1974) Monte Carlo
    free energy estimates using non-Boltzmann
    sampling: application to the sub-critical Len-
    nard-Jones fluid. Chem Phys Lett 28:578–581.
    https://doi.org/10.1016/0009-2614(74)
    80109-0


Enhanced Molecular Dynamics 425
Free download pdf