Computational Drug Discovery and Design

(backadmin) #1

  1. Torrie GM, Valleau JP (1977) Nonphysical
    sampling distributions in Monte Carlo free-
    energy estimation: umbrella sampling. J Com-
    put Phys 23:187–199. https://doi.org/10.
    1016/0021-9991(77)90121-8

  2. Laio A, Parrinello M (2002) Escaping free-
    energy minima. Proc Natl Acad Sci U S A
    99:12562–12566.https://doi.org/10.1073/
    pnas.202427399

  3. Barducci A, Bonomi M, Parrinello M (2011)
    Metadynamics. WIREs Comput Mol Sci
    1:826–843. https://doi.org/10.1002/wcms.
    31

  4. Sinko W, Miao Y, de Oliveira CAF, McCam-
    mon JA (2013) Population based reweighting
    of scaled molecular dynamics. J Phys Chem B
    117:12759–12768. https://doi.org/10.
    1021/jp401587e

  5. Hamelberg D, Mongan J, McCammon JA
    (2004) Accelerated molecular dynamics: a
    promising and efficient simulation method for
    biomolecules. J Chem Phys
    120:11919–11929. https://doi.org/10.
    1063/1.1755656

  6. Markwick PRL, McCammon JA (2011) Study-
    ing functional dynamics in bio-molecules using
    accelerated molecular dynamics. Phys Chem
    Chem Phys 13:20053–20065. https://doi.
    org/10.1039/c1cp22100k

  7. Pierce LCT, Salomon-Ferrer R, de Oliveira
    CAF et al (2012) Routine access to millisecond
    time scale events with accelerated molecular
    dynamics. J Chem Theory Comput
    8:2997–3002. https://doi.org/10.1021/
    ct300284c

  8. Hamelberg D, de Oliveira CAF, McCammon
    JA (2007) Sampling of slow diffusive confor-
    mational transitions with accelerated molecular
    dynamics. J Chem Phys 127:155102.https://
    doi.org/10.1063/1.2789432

  9. de Oliveira CAF, Grant BJ, Zhou M, McCam-
    mon JA (2011) Large-scale conformational
    changes of Trypanosoma cruzi proline


racemase predicted by accelerated molecular
dynamics simulation. PLoS Comput Biol 7:
e1002178.https://doi.org/10.1371/journal.
pcbi.1002178


  1. Grant BJ, Gorfe AA, McCammon JA (2009)
    Ras conformational switching: simulating
    nucleotide-dependent conformational transi-
    tions with accelerated molecular dynamics.
    PLoS Comput Biol 5:e1000325.https://doi.
    org/10.1371/journal.pcbi.1000325

  2. Skjærven L, Yao X-Q, Scarabelli G, Grant BJ
    (2014) Integrating protein structural dynamics
    and evolutionary analysis with Bio3D. BMC
    Bioinformatics. https://doi.org/10.1186/
    s12859-014-0399-6

  3. Miao Y, Sinko W, Pierce L et al (2014)
    Improved reweighting of accelerated molecular
    dynamics simulations for free energy calcula-
    tion. J Chem Theory Comput 10:2677–2689.
    https://doi.org/10.1021/ct500090q

  4. Roux B (1995) The calculation of the potential
    of mean force using computer simulations.
    Comput Phys Commun 91:275–282.
    https://doi.org/10.1016/0010-4655(95)
    00053-I

  5. Kumar S, Rosenberg JM, Bouzida D et al
    (1992) THE weighted histogram analysis
    method for free-energy calculations on biomo-
    lecules. I. The method. J Comput Chem
    13:1011–1021. https://doi.org/10.1002/
    jcc.540130812

  6. Mollica L, Decherchi S, Zia SR et al (2015)
    Kinetics of protein-ligand unbinding via
    smoothed potential molecular dynamics simu-
    lations. Sci Rep 5:11539.https://doi.org/10.
    1038/srep11539

  7. Mollica L, Theret I, Antoine M et al (2016)
    Molecular dynamics simulations and kinetic
    measurements to estimate and predict pro-
    tein–ligand residence times. J Med Chem
    59:7167–7176. https://doi.org/10.1021/
    acs.jmedchem.6b00632


426 Sonia Ziada et al.

Free download pdf