Produce Degradation Pathways and Prevention

(Romina) #1

Structure and Function of Complex Carbohydrates in Produce 591



  1. Huber, D. J., Polyuronide degradation and hemicellulose modifications in ripening
    in tomato fruits, Am. Soc. Hortic. Sci., 108, 405, 1983.

  2. Robertson, G. L. and Swinburne, D., Changes in chorophyll and pectin after storage
    and canning of kiwifruit, J. Food Sci., 46, 1557, 1981.

  3. Mollendroff, L. J. et al., Molecular characteristics of pectin constituents in relation
    to firmness, extractable juice, and woolliness in nectarines, Am. Soc. Hortic. Sci.,
    118, 77, 1993.

  4. Dellapenna, D. C., Alexander, D. C., and Bennett, A. B., Molecular cloning of tomato
    fruit polygalacturonase: analysis of polygalacturonase mRNA levels during ripening,
    Proc. Natl. Acad. Sci. USA., 63, 6420, 1986.

  5. Huber, D. J., The role of cell wall hydrolases in fruit softening, Hortic. Rev., 5, 169, 1983.

  6. Brady, C. J., Fruit ripening, Annu. Rev. Plant Physiol., 38, 155, 1987.

  7. Ben-Shalom, N. et al., Changes in molecular weight of water soluble and EDT-soluble
    pectin fractions from carrot after heat treatment, Food Chem., 45, 243, 1992.

  8. Gross, K. C. and Sams, C. E., Changes in neutral sugar composition during fruit
    ripening: a species survey, Phytochemistry, 23, 2457, 1984.

  9. Wallner, S. J. and Walker, J. E., Glycosidases in cell wall degrading extracts of
    ripening tomato products, Plant Physiol., 55, 94, 1975.

  10. Bartley, I. M., Exo-polygalacturonase of apple, Phytochemistry, 17, 213, 1978.

  11. Huber, D. J., Strawberry fruit softening: the potential roles of polyuronides and
    hemicelluloses, J. Food Sci., 49, 1310, 1984.

  12. Brady, C. J. et al., Interactions between the amount and molecular forms of polygalac-
    turonase, calcium, and firmness in tomato fruits, Am. Soc. Hortic. Sci., 110, 254, 1985.

  13. Hall, C. B., Firmness of tomato fruit tissues according to cultivar and ripeness, J.
    Am. Soc. Hortic. Sci., 112, 663, 1987.

  14. Tong, C. B. and Gross, C. K., Ripening characteristics of a tomato mutant, dark green,
    J. Am. Soc. Hortic. Sci., 114, 635, 1989.

  15. Fishman, M. L. et al., Macromolecular components of tomato fruit pectin, Arch.
    Biochem. Biophys., 274, 179, 1989.

  16. Batisse, C., Fils-Lycaon, B., and Buret, M., Pectin changes in ripening cherry fruits,
    J. Food Sci., 59, 389, 1994.

  17. Jarvis, M. C., Structure and properties of pectin gels in plant cell wall, Plant Cell
    Environ., 7, 153, 1984.

  18. Voragen, A. G. J., Schols, H. A., and Pilnik, W., Determination of the degree of
    methylation and acetylation of pectins by HPLC, Food Hydrocolloids, 1, 65, 1986.

  19. Kerstez, Z. I., The Pectic Substances, Interscience, New York, 1951.

  20. Sakai, T. et al., Pectin, pectinase and protopectinase: production, properties and
    applications, Adv. Appl. Microbiol., 39, 213, 1993.

  21. Karr, A. L., Cell wall biogenesis, in Plant Biochemistry, Bonner, J. and Varner, J. E.,
    Eds., Academic Press, New York, 1976, p. 405.

  22. Kauss, H. and Hassid, W. Z., Enzymatic introduction of methylester groups of pectin,
    J. Biol. Chem., 242, 3449, 1967.

  23. Roberts, K., Structure at the plant cell surface, Curr. Opin. Cell Biol., 2, 920, 1990.

  24. Tieman, D. M. et al., An antisense pectin methylesterase gene alters pectin chemistry
    and soluble solids in tomato fruits, Plant Cell, 4, 667, 1992.

  25. Dellapenna, D. et al., Polygalacturonase isozymes and pectin depoIymerization in
    transgenic tomato fruits, Plant Physiol., 94, 1882, 1990.

  26. Tieman, D. M. and Handa, A. K., Reduction in pectin methylesterase activity modifies
    tissue integrity and cation levels in ripening tomato (Lycopersicon esculentum Mill.)
    fruits, Plant Physiol., 106, 429, 1994.

Free download pdf