Produce Degradation Pathways and Prevention

(Romina) #1

592 Produce Degradation: Reaction Pathways and their Prevention



  1. Wells, B. et al., Structural features of cell walls from tomato cells adapted to grow
    on the herbicide 2,6-dichlorobenzonitrile, J. Microsc., 173, 155, 1994.

  2. McCann, M. C. et al., Changes in pectin structure and localization during the growth
    of unadapted and NaCI-adapted tobacco cells, Plant J., 5, 773, 1994.

  3. Esteban, R. M. et al., Pectin changes during the development and ripening of eggplant
    fruits, Food Chem., 46, 289, 1993.

  4. McMillan, G. P. et al., Potato resistance to soft rot erwinias is related to cell wall
    pectin esterification, Physiol. Mol. Plant Pathol., 42, 279, 1993.

  5. Weichmann, J., Postharvest physiology and secondary metabolism, J. Appl. Bot.
    Angewandte Botanik, 74, 126, 2000.

  6. Sams, C. E., Preharvest factors affecting postharvest texture, Postharv. Biol. Biotech-
    nol., 15, 249, 1999.

  7. Wolf B. W., Bauer, L. L., and Fahey, G. C. Jr., Effects of chemical modification on
    in vitro rate and extent of food starch digestion: an attempt to discover a slowly
    digested starch, J. Food Agric. Chem., 47, 4178, 1999.

  8. Coleman, G. S., The metabolism of cellulose, glucose, and starch by the rumen ciliate
    protozoa Eudiplodinium maggii, J. Gen. Microbiol., 107, 159, 1978.

  9. Tucker, M. L. et al., Avocado cellulase: nucleotide sequence of a putative full-length
    cDNA clone and evidence for a small gene family, Plant Mol. Biol., 9, 197, 1987.

  10. Jones, T. H. D., de Renobales, M., and Pon, N., Cellulases released during the
    germination of Dictyostelium discoideum spores, J. Bacteriol., 137, 752, 1979.

  11. Blume, J. E., and Ennis, H. L., A Dictyostelium discoideum cellulase is a member
    of a spore germination-specific gene family, J. Biol. Chem., 266, 15432, 1991.

  12. McCarthy, A. J., Lignocellulose-degrading actinomycetes, FEMS Microbiol. Rev., 46,
    145, 1987.

  13. Huang, J. et al., Molecular analysis of differentially expressed genes during posthar-
    vest deterioration in Casava (Manihot Esculenta Crantz) tuberous roots, Euphytica,
    120, 85, 2001.

  14. Duque, P., Barreiro, M. G., and Arrabaca, J. D., Respiratory metabolism during cold
    storage of apple fruit. I. sucrose metabolism and glycolysis, Physiologia Plant., 107,
    14, 1999.

  15. Chardonnet, C. O. et al., Chemical changes in cortical tissue and cell walls of calcium-
    infiltrated ‘golden delicious’ apples during storage, Postharv. Biol. Technol., 28, 97,



  16. Liu, X. et al., ‘Hass’ avocado carbohydrate fluctuations. 2. fruits growth and ripening,
    J. Am. Soc. Hortic. Sci., 124, 676, 1999.

  17. Song, K.J., Echeverria, E., and Lee, H. S., Distribution of sugars and related enzymes
    in the stem and blossom halves of ‘valencia’ oranges, J. Am. Soc. Hortic. Sci., 123,
    416, 1998.

  18. Burns, J. K. and Albrigo, L. G., Time of harvest and method of storage affect on
    granulation in grapefruit, Hortscience, 33, 728, 1998.

  19. Antunes, L. E. C., Duarte, J., and De Souza, C. M., Postharvest conservation of
    blackberry fruits, Pesquisa Agropecuaria Brasileria, 38, 413, 2003.

  20. Hofmann, T., Characterization of precursors and elucidation of the reaction pathways
    leading to a novel colored 2h, 7h, 8ah-pyranol[2,3-B]pyran-3-one from pentoses by
    quantitative studies and application of C-13-labelling experiments, Carbohydr. Res.,
    313, 215, 1998.

  21. Hofmann, T., Quantitative studies on the role of browning precursors in the Maillard
    reaction of pentoses and hexoses with L-alanine, Eur. Food Res. Technol., 209, 113, 1999.

Free download pdf