Produce Degradation Pathways and Prevention

(Romina) #1

594 Produce Degradation: Reaction Pathways and their Prevention



  1. Planchot, V. et al., Extensive degradation of native starch granules by alpha-amylase
    from Aspergillus fumigatus, J. Cereal Sci., 21, 163, 1995.

  2. Offner, A., Bach, A., and Sauvant, D., Quantitative review of in situ starch degradation
    in the rumen, Anim. Feed Sci. Technol., 106, 93, 2003.

  3. Rollings, J., Enzymatic depolymerization of polysaccharides, Carbohydr. Polym., 5,
    37, 1985.

  4. Gupta, R. et al., Microbial alpha-amylases: a biotechnological perspective, Process.
    Biochem., 38, 1599, 2003.

  5. Pilnik, W. and Rombouts, F., Polysaccharides and food processing, Carbohydr.
    Res.,142, 93, 1985.

  6. Pandy, A. et al., Advances in microbial amylases, Biotechnol. Appl. Biochem., 31,
    135, 2000.

  7. van der Maarel, M. et al., Properties and applications of starch converting enzymes
    of alpha amylase family, J. Biotechnol., 94, 137, 2002.

  8. Sutherland, I.W., Polysaccharases for microbial exopolysaccharides, Carbohydr.
    Polym., 38, 319, 1999.

  9. Zhu, Z. P. et al., Characterization of starch-debranching enzymes in pea embryos,
    Plant Physiol. 118, 581, 1998.

  10. Kim, Y.-K., and Robyt, J., Enzyme modification of starch granules: in situ reaction
    of glucoamylase to give complete retention of D-glucoside in side the granule,
    Carbohydr. Res., 318, 129, 1999.

  11. Kang, H. C. and Lee, S. H., Characteristics of an alpha-galactosidase associated with
    grape flesh, Phytochemistry, 58, 213, 2001.

  12. Rosenkranz, H. et al., In wounded sugar beet (Beta Vulgaris L.) tap-root, hexose
    accumulation correlates with the induction of a vacuolar invertase isoform. J. Exp.
    Bot., 52, 2381, 2001.

  13. Kotstee, A. et al., The influence of an increased degree of branching on the physico-
    chemical properties of starch from genetically modified potato, Carbohydr. Polym.,
    37, 173, 1998.

  14. Din, N. et al., Non-hydrolytic disruption of cellulose fibers by the binding domain
    of a bacterial cellulase. Bio/Technology, 9, 1096, 1991.

  15. Sprey, B. and Bochem, H. P., Electronmicroscopic observations of cellulose
    microfibril degradation by endocellulase from Trichoderma reesei, FEMS Microbiol.
    Lett., 78, 183, 1991.

  16. Sprey, B., and Bochem, H. P., Effect of endogluconase and cellobiohydyrolase Tri-
    choderma reesei on cellulose microfibril structure, FEMS Microbiol. Lett., 97, 113,



  17. Sprey, B., and Bochem, H. P., Formation of crossfracture in cellulose microfibril
    structure by an endogluconase-cellobiohydyrolase complex from Trichoderma reesei,
    FEMS Microbiol. Lett., 106, 239, 1993.

  18. Wood, T.M. and Garcia-Campayo, G. V., Biodegradation, in Physiology of Biodeg-
    radative Microorganisms, Ridge, C., Ed., Kluwer Academic Publishers, Dordrecht,
    The Netherlands, 1990, pp. 147–161.

  19. Walker, L. P., and Wilson, D. B., Enzymatic hydrolysis of cellulose: an overview,
    Bioresource Technol., 36, 3, 1991.

  20. Wood, T. M. et al., Aerobic and anerobic fungal cellulases with special reference to
    their mode of attack on crystalline cellulose, in Biochemistry and Genetics of Cellu-
    lose Degradation, Aubert, J.-P., Béguin, P., and Millet, J., Eds., Academic Press, New
    York, 1988, pp. 31–52.

Free download pdf