Produce Degradation Pathways and Prevention

(Romina) #1

Structure and Function of Complex Carbohydrates in Produce 595



  1. Cao, Yu., and Huimin, T., Effects of cellulase on the modification of cellulose,
    Carbohydr. Res., 337, 1291, 2002.

  2. Tuula, T. T., Crystalline cellulose degradation: new insight into the function of
    cellobiohydrolases, Trends Biotechnol., 15, 160, 1997.

  3. Fleet, G., Spoilage yeasts, CRC Critical Rev. Biotechnol., 12, 1, 1992.

  4. Eskin, N. A. M., Biochemistry of Foods, Academic Press, New York, 1990, p. 557.

  5. Zhang, D. et al., Biochemical changes in iceberg lettuce (Lactuca sativa) during
    postharvest storage at 4°C, Food Sci. Technol., 14, 209, 2000.

  6. Tagger, S. C. et al., Phenoloxidases of the white-rot fungus Marasmiius quercophilus
    isolated from an evergreen oak litter (Quercus ilex L.), Enzym. Microbial Technol.,
    23, 372, 1998.

  7. Gold, M., Wariishi, I. T., and Valli, K., Extracellular peroxidase involved in lignin
    degradation by the white-rot Phanerochaete chrysosporium, in Biocatalysis in Agri-
    cultural Biotechnology, Whitaker, J. and Sonnet, P. E., Eds., American Chemical
    Society, Washington, DC, 1989, pp.127–140.

  8. Johnson, E. A., Reese, E. T., and Demain, A. L., Inhibition of Clostridium thermo-
    cellum cellulase by end products of cellulolysis, J. Appl. Biochem., 4, 64, 1982.

  9. Demir, N. et al., The use of commercial pectinase in fruit juice industry. 3. immobi-
    lized pectinase for mash treatment, J. Food Eng., 47, 275, 2001.

  10. Tijskens, L. M. M. et al., The kinetics of pectinmethylesterase in potatoes and carrots
    during blanching, J. Food Eng., 34, 371, 1997.

  11. Massiot, P., Baron, A., and Drilleau, J. F., Enzymatic hydrolysis of carrot cell-wall
    polysaccharides, in situ or after isolation as alcohol insoluble residue, Acta Aliment.,
    21, 293, 1992.

  12. Ziegler, P., Cereal beta-amylases, J. Cereal Sci., 29, 195, 1999.

  13. Bruton, B. D. et al., Polygalacturonases of a latent and wound postharvest fungal
    pathogen of muskmelon fruit, Postharv. Biol. Technol., 13, 205, 1998.

  14. Kunzek, H., Kabbert, R., and Gloyna, D., Aspects of material science in food pro-
    cessing: changes in plant cell walls of fruits and vegetables, Eur. Food Res. Technol.,
    208, 233, 1999.

  15. Paliyath, G. and Droillard, M. J., The mechanisms of membrane deterioration and
    disassembly during senescence, Plant Physiol. Biochem., 30, 789, 1992.

  16. Almeida, D. P. F. and Huber, D. J., Apoplastic pH and inorganic ion levels in tomato
    fruit: a potential means for regulation of cell wall metabolism during ripening,
    Physiol. Plant., 105, 506, 1999.

  17. Chun, J. P. and Huber, D. J., Polygalacturonase-mediated soubilization and depoly-
    merization of pectic polymers in tomato fruit cell walls: regulation by pH and ionic
    conditions, Plant Physiol., 117, 1293, 1998.

  18. Moretti, C. L., et al., Chemical composition and physical properties of pericarp,
    locule, and placental tissues of tomatoes with internal bruising, J. Am. Soc. Hortic.
    Sci., 123, 656, 1998.

  19. Huyskens-Keil, S., Schreiner, M., and Ulrichs, C., Cell wall carbohydrate metabolism
    of perishable vegetables in pre- and post-harvest, Acta Hortic., 553, 201, 2001.

  20. Kozlowski, T. T. and Pallardy, S. G., Acclimation and adaptive responses of woody
    plants to environmental stresses, Bot. Rev., 68, 270, 2002.

  21. Diaz-Perez, J. C., Bautista, S., and Villanueva, R., Quality changes in sapote mamey
    fruit during ripening and storage, Postharv. Biol. Technol., 18, 67, 2000.

  22. Dixon, J., and Hewett, E. W., Temperature effects postharvest color change of apples,
    J. Am. Soc. Hortic. Sci., 123, 305, 1998.

Free download pdf