356 Chapter 5 Higher Dimensions and Other Coordinates
hasasitssolution
φ(x)=
∫x
0
1
1 −y^2
∫ 1
y
f(z)dz dy,
provided that the functionfsatisfies
∫ 1
− 1
f(z)dz= 0.
11.Suppose that the functionsf(x)andφ(x)in the preceding exercise have
expansions in terms of Legendre polynomials
f(x)=
∑∞
k= 0
bkPk(x), − 1 <x< 1 ,
φ(x)=
∑∞
k= 0
BkPk(x), − 1 <x< 1.
What is the relation betweenBkandbk?
12.By applying separation of variables to the problem
∇^2 u= 0 , 0 <ρ<a, 0 ≤φ<π,
withubounded atφ=0,πanduperiodic( 2 π)inθ,derivethefollow-
ing equation for the factor function(φ):
sin(φ)
(
sin(φ)′
)′
−m^2 +μ^2 sin^2 (φ)= 0 ,
wherem= 0 , 1 , 2 ,...comes from the factor(θ).
13.Using the change of variablesx=cos(φ),(φ)=y(x)on the equation
of Exercise 12, derive a differential equation fory(x).
14.Solve the heat conduction problem
1
r
∂
∂r
(
r∂∂ur
)
=^1 k∂∂ut, 0 <r<a, 0 <t,
∂u
∂r(a,t)=^0 ,^0 <t,
u(r, 0 )=T 0 −
(r
a
) 2
, 0 <r<a.