Appendix: Mathematical References 437
b.
∫a
a
f(x)dx= 0
c.
∫b
a
f(x)dx=−
∫a
b
f(x)dx
d.
∫b
a
f(x)dx=
∫c
a
f(x)dx+
∫b
c
f(x)dx
3.Derivatives of integrals
a.
d
dt
∫b
a
f(x,t)dx=
∫b
a
∂f
∂t(x,t)dx
b. dtd
∫t
a
f(x)dx=f(t) (Fundamental theorem of calculus;
ais constant)
c. d
dt
∫v(t)
u(t)
f(x,t)dx=f
(
v(t),t
)
v′(t)−f
(
u(t),t
)
u′(t)
+
∫v(t)
u(t)
∂f
∂t(x,t)dx (Leibniz’s rule)
4.Integration by parts
a.
∫
uv′dx=uv−
∫
vu′dx
b.
∫
uv′′dx=v′u−vu′+
∫
vu′′dx
5.Functions defined by integrals
a.Natural logarithm
ln(x)=
∫x
1
dz
z
b.Sine-integral function
Si(x)=
∫x
0
sin(z)
z
dz
c.Normal probability distribution function
(x)=
1
√
2 π
∫x
−∞
e−z^2 /^2 dz
d.Error function
erf(x)=
2
√π
∫x
0
e−z^2 dz
Note: erf(x)= 2
(√
2 x