Appendix: Mathematical References 437
b.∫aaf(x)dx= 0c.∫baf(x)dx=−∫abf(x)dxd.∫baf(x)dx=∫caf(x)dx+∫bcf(x)dx3.Derivatives of integrals
a.d
dt∫baf(x,t)dx=∫ba∂f
∂t(x,t)dxb. dtd∫taf(x)dx=f(t) (Fundamental theorem of calculus;
ais constant)c. d
dt∫v(t)u(t)f(x,t)dx=f(
v(t),t)
v′(t)−f(
u(t),t)
u′(t)+
∫v(t)u(t)∂f
∂t(x,t)dx (Leibniz’s rule)4.Integration by parts
a.∫
uv′dx=uv−∫
vu′dxb.∫
uv′′dx=v′u−vu′+∫
vu′′dx5.Functions defined by integrals
a.Natural logarithmln(x)=∫x1dz
z
b.Sine-integral functionSi(x)=∫x0sin(z)
zdzc.Normal probability distribution function(x)=1
√
2 π∫x−∞e−z^2 /^2 dzd.Error function
erf(x)=2
√π∫x0e−z^2 dzNote: erf(x)= 2 (√
2 x