1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

Chapter 1 453


13.f(x)=


∑∞

n= 1

bnsin(nπx),bn= 2

(

1 +cos(nπ)

)

/nπ.

15.f(x)=


∑∞

n= 1

bnsin(nx),

b 2 =^1
2

,otherbn=4sin(nπ/^2 )
π( 4 −n^2 )

.

17.

∑N

1

cos(nx)=Re

∑N

1

einx=Re

eix−eiNx
1 −eix =Re

eix/^2 −ei(^2 N−^1 )x/^2
e−ix/^2 −eix/^2.
The denominator is now− 2 isin(x/ 2 ).

19.f(x)=


∑∞

n= 1

bnsin(nx),bn=^2 asin(na+π)
n^2 a^2 −π^2

.

21.f(x)=


∫∞

0

(

sin(λa)
λπ cos(λx)+

1 −cos(λa)
λπ sin(λx)

)

dλ.

23.f(x)=


∫∞

0

2sin(λπ )
π( 1 −λ^2 )sin(λx)dλ (x>0).


  1. Use


∫∞

0

sin(λt)
λ

dλ=π
2

.


  1. These answers are not unique.


a.

∑∞

n= 1

bnsin(nπx),bn= 2 /nπ;

b.a 0 +

∑∞

n= 1

ancos(nπx),a 0 =^1
2

,an= 2

(

1 −cos(nπ)

)

/n^2 π^2 ;

c.

∫∞

0

B(λ)sin(λx)dλ,B(λ)= 2

(

λ−sin(λ)

)/(

πλ^2

)

;

d.

∫∞

0

A(λ)cos(λx)dλ,A(λ)= 2

(

1 −cos(λ)

)/(

πλ^2

)

.

The integrals of parts c. and d. converge to 0 forx>1.


  1. Uses=6inEq.(7)ofSection8.


ˆa 0 = 0. 78424 , aˆ 4 =− 0. 00924 ,
ˆa 1 = 0. 22846 , aˆ 5 = 0. 00744 ,
ˆa 2 =− 0. 02153 , aˆ 6 =− 0. 00347 ,
ˆa 3 = 0. 01410.
Free download pdf