Chapter 1 453
13.f(x)=
∑∞
n= 1
bnsin(nπx),bn= 2
(
1 +cos(nπ)
)
/nπ.
15.f(x)=
∑∞
n= 1
bnsin(nx),
b 2 =^1
2
,otherbn=4sin(nπ/^2 )
π( 4 −n^2 )
.
17.
∑N
1
cos(nx)=Re
∑N
1
einx=Re
eix−eiNx
1 −eix =Re
eix/^2 −ei(^2 N−^1 )x/^2
e−ix/^2 −eix/^2.
The denominator is now− 2 isin(x/ 2 ).
19.f(x)=
∑∞
n= 1
bnsin(nx),bn=^2 asin(na+π)
n^2 a^2 −π^2
.
21.f(x)=
∫∞
0
(
sin(λa)
λπ cos(λx)+
1 −cos(λa)
λπ sin(λx)
)
dλ.
23.f(x)=
∫∞
0
2sin(λπ )
π( 1 −λ^2 )sin(λx)dλ (x>0).
- Use
∫∞
0
sin(λt)
λ
dλ=π
2
.
- These answers are not unique.
a.
∑∞
n= 1
bnsin(nπx),bn= 2 /nπ;
b.a 0 +
∑∞
n= 1
ancos(nπx),a 0 =^1
2
,an= 2
(
1 −cos(nπ)
)
/n^2 π^2 ;
c.
∫∞
0
B(λ)sin(λx)dλ,B(λ)= 2
(
λ−sin(λ)
)/(
πλ^2
)
;
d.
∫∞
0
A(λ)cos(λx)dλ,A(λ)= 2
(
1 −cos(λ)
)/(
πλ^2
)
.
The integrals of parts c. and d. converge to 0 forx>1.
- Uses=6inEq.(7)ofSection8.
ˆa 0 = 0. 78424 , aˆ 4 =− 0. 00924 ,
ˆa 1 = 0. 22846 , aˆ 5 = 0. 00744 ,
ˆa 2 =− 0. 02153 , aˆ 6 =− 0. 00347 ,
ˆa 3 = 0. 01410.