Chapter 1 453
13.f(x)=
∑∞
n= 1bnsin(nπx),bn= 2(
1 +cos(nπ))
/nπ.15.f(x)=
∑∞
n= 1bnsin(nx),b 2 =^1
2,otherbn=4sin(nπ/^2 )
π( 4 −n^2 ).
17.
∑N
1cos(nx)=Re∑N
1einx=Reeix−eiNx
1 −eix =Reeix/^2 −ei(^2 N−^1 )x/^2
e−ix/^2 −eix/^2.
The denominator is now− 2 isin(x/ 2 ).19.f(x)=
∑∞
n= 1bnsin(nx),bn=^2 asin(na+π)
n^2 a^2 −π^2.
21.f(x)=
∫∞
0(
sin(λa)
λπ cos(λx)+1 −cos(λa)
λπ sin(λx))
dλ.23.f(x)=
∫∞
02sin(λπ )
π( 1 −λ^2 )sin(λx)dλ (x>0).- Use
∫∞
0sin(λt)
λdλ=π
2.
- These answers are not unique.
a.∑∞
n= 1bnsin(nπx),bn= 2 /nπ;b.a 0 +∑∞
n= 1ancos(nπx),a 0 =^1
2,an= 2(
1 −cos(nπ))
/n^2 π^2 ;c.∫∞
0B(λ)sin(λx)dλ,B(λ)= 2(
λ−sin(λ))/(
πλ^2)
;
d.∫∞
0A(λ)cos(λx)dλ,A(λ)= 2(
1 −cos(λ))/(
πλ^2)
.
The integrals of parts c. and d. converge to 0 forx>1.- Uses=6inEq.(7)ofSection8.
ˆa 0 = 0. 78424 , aˆ 4 =− 0. 00924 ,
ˆa 1 = 0. 22846 , aˆ 5 = 0. 00744 ,
ˆa 2 =− 0. 02153 , aˆ 6 =− 0. 00347 ,
ˆa 3 = 0. 01410.