1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

Chapter 4 475


b.u(x,y)=

2

π

∫∞

0

λ
1 +λ^2 sin(λx)

sinh(λ(b−y))
sinh(λb) dλ.

11.u(x,y)=

∫∞

0

2

π( 1 +λ^2 )

sinh(λx)
sinh(λa)cos(λy)dλ.
13.e−λysin(λx),λ>0.
15.e−λysin(λx),e−λycos(λx),λ>0.

17.u(x,y)=^1
π


2

+tan−^1 (x/y)

]

.


  1. This solution is unbounded asxtends to infinity and cannot be found
    by the method of this section.


Section 4.5


1.v(r,θ)is given by Eq. (10) withbn=0,a 0 =π/2,
an=−2(1−cos(nπ ))/πn^2 cn.


  1. The solution is as in Eq. (10) withbn=0,a 0 = 1 /π,a 1 = 1 /2, and


an=

2sin((n− 1 )π/ 2 )
π(n^2 − 1 ) forn=1.


  1. Convergence is uniform inθ.


7.a 0 =

1

2 π

∫π

−π

f(θ )dθ,an=

cn
π

∫π

−π

f(θ )cos(nθ)dθ,

bn=c

n
π

∫π

−π

f(θ )sin(nθ)dθ.


  1. π^2


∑∞

n= 1

1 −cos(nπ)
nc^2 n r

2 nsin( 2 nθ)=v(r,θ).

11.vn(r,θ)=rn/αsin(nθ/α)has∂v/∂runbounded asr→ 0 +,ifn=1.

Section 4.6



  1. Hyperbolic (a) and (e); elliptic (b) and (c); parabolic (d).

  2. Only (e).

  3. a.u(x,y)=


∑∞

1

ansin(nπx)e−nπy;

b.u(x,y)=

∑∞

1

ansin(nπx)cos(nπy);
Free download pdf