Chapter 4 475
b.u(x,y)=2
π∫∞
0λ
1 +λ^2 sin(λx)sinh(λ(b−y))
sinh(λb) dλ.11.u(x,y)=∫∞
02
π( 1 +λ^2 )sinh(λx)
sinh(λa)cos(λy)dλ.
13.e−λysin(λx),λ>0.
15.e−λysin(λx),e−λycos(λx),λ>0.17.u(x,y)=^1
π[π
2+tan−^1 (x/y)]
.
- This solution is unbounded asxtends to infinity and cannot be found
by the method of this section.
Section 4.5
1.v(r,θ)is given by Eq. (10) withbn=0,a 0 =π/2,
an=−2(1−cos(nπ ))/πn^2 cn.- The solution is as in Eq. (10) withbn=0,a 0 = 1 /π,a 1 = 1 /2, and
an=2sin((n− 1 )π/ 2 )
π(n^2 − 1 ) forn=1.- Convergence is uniform inθ.
7.a 0 =1
2 π∫π−πf(θ )dθ,an=cn
π∫π−πf(θ )cos(nθ)dθ,bn=cn
π∫π−πf(θ )sin(nθ)dθ.- π^2
∑∞
n= 11 −cos(nπ)
nc^2 n r2 nsin( 2 nθ)=v(r,θ).11.vn(r,θ)=rn/αsin(nθ/α)has∂v/∂runbounded asr→ 0 +,ifn=1.Section 4.6
- Hyperbolic (a) and (e); elliptic (b) and (c); parabolic (d).
- Only (e).
- a.u(x,y)=
∑∞
1ansin(nπx)e−nπy;b.u(x,y)=∑∞
1ansin(nπx)cos(nπy);