1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

Chapter 4 477


21.u(r,θ)=


∑∞

1

bn

(r
c

)n/ 2
sin(nθ/ 2 ),bn=^1
π

∫ 2 π

0

f(θ )sin(nθ/ 2 )dθ.

23.u(x,y)=



cnsinh(λny)sin(λnx),λn=( 2 n− 1 )π/ 2 a,
cn=2sin(λna)/(aλ^2 nsinh(λnb)).

25.wsatisfies the potential equation in the rectangle with boundary condi-
tions
w( 0 ,y)=0, wx(a,y)=ay/b,0<y<b,
w(x, 0 )=0, w(x,b)=0, 0 <x<a.


w(x,y)=

∑∞

n= 1

bnsin(λny)cosh(λnx),

λn=nπ/b,bn= 2 a(− 1 )n+^1 /n^2 π^2 cosh(λna).


  1. The equations become


∂^2 φ
∂y∂x=

∂^2 φ
∂x∂y,

(

1 −M^2

)∂^2 φ
∂x^2 +

∂^2 φ
∂y^2 =^0.

29.φ(x,y)=


∫∞

0

(

A(α)cos(αx)+B(α)sin(αx)

)

e−βydα+c,

whereβ=α


1 −M^2 ,cis an arbitrary constant, and

A(α)
B(α)

}

=−U^0

βπ

∫∞

−∞

f′(x)

{

cos(αx)
sin(αx)

}

dx.


  1. If(x(s),y(s))is the parametric representation for the boundary curveC,
    then the vectory′i−x′jis normal toC,and


C

∂u
∂n

ds=


C

∂u
∂x

dy−∂u
∂y

dx.

By Green’s theorem,

C

∂u
∂x

dy−∂u
∂y

dx=

∫∫

R

(

∂^2 u
∂x^2

+∂

(^2) u
∂y^2


)

dA,

which is 0, sinceusatisfies the potential equation inR.


  1. Substitute directly.


35.−∇u=−(xi+yj)/(x^2 +y^2 ).

Free download pdf