Chapter 4 477
21.u(r,θ)=
∑∞
1
bn
(r
c
)n/ 2
sin(nθ/ 2 ),bn=^1
π
∫ 2 π
0
f(θ )sin(nθ/ 2 )dθ.
23.u(x,y)=
∑
cnsinh(λny)sin(λnx),λn=( 2 n− 1 )π/ 2 a,
cn=2sin(λna)/(aλ^2 nsinh(λnb)).
25.wsatisfies the potential equation in the rectangle with boundary condi-
tions
w( 0 ,y)=0, wx(a,y)=ay/b,0<y<b,
w(x, 0 )=0, w(x,b)=0, 0 <x<a.
w(x,y)=
∑∞
n= 1
bnsin(λny)cosh(λnx),
λn=nπ/b,bn= 2 a(− 1 )n+^1 /n^2 π^2 cosh(λna).
- The equations become
∂^2 φ
∂y∂x=
∂^2 φ
∂x∂y,
(
1 −M^2
)∂^2 φ
∂x^2 +
∂^2 φ
∂y^2 =^0.
29.φ(x,y)=
∫∞
0
(
A(α)cos(αx)+B(α)sin(αx)
)
e−βydα+c,
whereβ=α
√
1 −M^2 ,cis an arbitrary constant, and
A(α)
B(α)
}
=−U^0
βπ
∫∞
−∞
f′(x)
{
cos(αx)
sin(αx)
}
dx.
- If(x(s),y(s))is the parametric representation for the boundary curveC,
then the vectory′i−x′jis normal toC,and
∫
C
∂u
∂n
ds=
∫
C
∂u
∂x
dy−∂u
∂y
dx.
By Green’s theorem,
∫
C
∂u
∂x
dy−∂u
∂y
dx=
∫∫
R
(
∂^2 u
∂x^2
+∂
(^2) u
∂y^2
)
dA,
which is 0, sinceusatisfies the potential equation inR.
- Substitute directly.
35.−∇u=−(xi+yj)/(x^2 +y^2 ).