1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

520 BIBLIOGRAPHY


[159] Gray, Brayton. Homotopy theory. An introduction to algebraic topology. Pure and
Applied Mathematics, Vol. 64. Academic Press [Harcourt Brace Jovanovich, Pub-
lishers], New York-London, 1975.
[160] Grayson, Matthew A. Shortening embedded curves. Ann. of Math. (2) 129 (1989),
no. 1, 71-111.
[161] Grayson, Matthew; Hamilton, Richard S. The formation of singularities in the har-
monic map heat flow. Comm. Anal. Geom. 4 (1996), no. 4, 525-546.
[162] Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory, Volumes 1 & 2. Cam-
bridge University Press, Cambridge, 1987.
[163] Greene, R. E.; Wu, H. 000 convex functions and manifolds of positive curvature.
Acta Math. 137 (1976), no. 3-4, 209-245.
[164] Greene, R. E.; Wu, H. Function theory on manifolds which possess a pole. Lecture
Notes in Mathematics, 699. Springer, Berlin, 1979.
[165] Greene, R. E.; Wu, H. Lipschitz convergence of Riemannian manifolds. Pacific
J. Math. 131 (1988), no. 1, 119-141.
[166] Griffiths, Phillip; Harris, Joseph. Principles of algebraic geometry. Reprint of the
1978 original. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994.
[167] Grigor'yan, Alexander. Upper bounds of derivatives of the heat kernel on an arbitrary
complete manifold. J. Funct. Anal. 127 (1995), no. 2, 363-389.
[168] Grigor'yan, Alexander. Gaussian upper bounds for heat kernel on arbitrary mani-
folds, J. Differential Geom. 45 (1997), 33-52.
[169] Gromov, Misha. Metric structures for Riemannian and non-Riemannian spaces.
Based on the 1981 French original. With appendices by M. Katz, P. Pansu and
S. Semmes. Translated from the French by Sean Michael Bates. Progress in Mathe-
matics, 152. Birkhauser Boston, Inc., Boston, MA, 1999.
[170] Gross, Leonard. Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975), no. 4,
1061-1083.
[171] Guenther, Christine M. The fundamental solution on manifolds with time-dependent
metrics. J. Geom. Anal. 12 (2002), no. 3, 425-436.
[172] Guenther, Christine; Isenberg, Jim; Knopf, Dan, Stability of the Ricci flow at Ricci-
flat metrics, Comm. Anal. Geom. 10 (2002), no. 4, 741-777.
[173] Gursky, Matthew. The Weyl functional, de Rham cohomology, and Kahler-Einstein
metrics, Ann. of Math. 148 (1998), 315-337.
[174] Gutperle, Michael; Headrick, Matthew; Minwalla, Shiraz; Schomerus, Volker. Space-
time energy decreases under world-sheet RG flow. arXiv:hep-th/0211063.
[175] Haagensen, Peter E., Duality Transformations Away From Conformal Points. Phys.
Lett. B 382 (1996), 356-362.
[176] Haken, Wolfgang. Theorie der Normalflachen. Acta Math. 105 (1961), 245-375.
[177] Hamilton, Richard S. Harmonic maps of manifolds with boundary. Lecture Notes in
Mathematics, Vol. 471. Springer-Verlag, Berlin-New York, 1975.
[178] Hamilton, Richard S. Three-manifolds with positive Ricci curvature. J. Differential
Geom. 17 (1982), no. 2, 255-306.
[179] Hamilton, Richard S. Four-manifolds with positive curvature operator. J. Differential
Geom. 24 (1986), no. 2, 153-179.
[180] Hamilton, Richard S. The Ricci flow on surfaces. Mathematics and general rela-
tivity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc.,
Providence, RI, 1988.
[181] Hamilton, Richard S. The Harnack estimate for the Ricci flow. J. Differential
Geom. 37 (1993), no. 1, 225-243.
[182] Hamilton, Richard S. Eternal solutions to the Ricci flow, J. Differential Geom. 38
(1993), 1-11.
[183] Hamilton, Richard. A matrix Harnack estimate for the heat equation, Comm. Anal.
Geom. 1 (1993), 113-126.

Free download pdf