1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

522 BIBLIOGRAPHY


[209] Huang, Hong. A note on Morse's index theorem for Perelman's £-length.
arXiv:math.DG /0602090.
[210] Huber, Alfred. On subharmonic functions and differential geometry in the large.
Comment. Math. Helv. 32 (1957), 13-72.
[211] Huisken, Gerhard. Flow by mean curvature of convex surfaces into spheres, J. Dif-
ferential Geom. 20 (1984), no. 1, 237-266.
[212] Huisken, Gerhard. Ricci deformation of the metric on a Riemannian manifold.
J. Differential Geom. 21 (1985), no. 1, 47-62.
[213] Huisken, Gerhard. Asymptotic behavior for singularities of the mean curvature flow.
J. Differential Geom. 31 (1990), no. 1, 285-299.
[214] Ishii, Hitoshi; Lions, Pierre-Louis. Viscosity solutions of fully nonlinear second-order
elliptic partial differential equations. J. Differential Equations 83 (1990), no. 1, 26-
78.
[215] Iskovskih, V. A. Fano threefolds. I. Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977),
no. 3, 516-562, 717.
[216] Iskovskih, V. A. Fano threefolds. II. Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978),
no. 3, 506-549.
[217] Ivey, Thomas. On solitons for the Ricci Flow. PhD thesis, Duke University, 1992.
[218] Ivey, Thomas. Ricci solitons on compact three-manifolds. Diff. Geom. Appl. 3 (1993),
301-307.
[219] Ivey, Thomas. New examples of complete Ricci solitons. Proc. Amer. Math. Soc.
122 (1994), 241-245.
[220] Ivey, Thomas. The Ricci flow on radially symmetric JR^3. Comm. Part. Diff. Eq. 19
(1994), 1481-1500.
[221] Ivey, Thomas. Local existence of Ricci solitons. Manuscripta Math. 91 (1996), 151-
162.
[222] Ivey, Thomas. Ricci solitons on compact Kahler surfaces. Proc. Amer.
Math. Soc. 125 (1997), no. 4, 1203-1208.
[223] Ivey, Thomas A.; Landsberg, J. M. Cartan for beginners: differential geometry via
moving frames and exterior differential systems. Graduate Studies in Mathematics,


  1. American Mathematical Society, Providence, RI, 2003.
    [224] Jaco, William; Shalen, Peter B. Seifert fibered spaces in 3-manifolds. Geometric
    topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), pp. 91-99, Academic
    Press, New York-London, 1979.
    [225] Johannson, Klaus. Homotopy equivalences of 3-manifolds with boundaries. Lecture
    Notes in Mathematics, 761. Springer, Berlin, 1979.
    [226] Juutinen, Petri; Lindqvist, Peter; Manfredi, Juan J. On the equivalence of viscosity
    solutions and weak solutions for a quasi-linear equation. SIAM J. Math. Anal. 33
    (2001), no. 3, 699-717.
    [227] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl.
    Math. 30 (1977), 509-541.
    [228] Karp, Leon; Li, Peter. The heat equation on complete Riemannian manifolds. Un-
    published manuscript.
    [229] Kasue, A. A compactification of a manifold with asymptotically nonnegative curva-
    ture. Ann. Scient. Ee. Norm. Sup. 21 (1988), 593-622.
    [230] Kato, Tosio. Perturbation theory for linear operators. Reprint of the 1980 edition.
    Classics in Mathematics. Springer-Verlag, Berlin, 1995.
    [231] Kleiner, Bruce; Lott, John. Notes on Perelman's papers. May 16, 2006.
    http://www.math.lsa.umich.edu;-lott/riccifiow/perelman.html
    [232] Knapp, Anthony W. Lie groups, Lie algebras, and cohomology. Mathematical Notes,

  2. Princeton University Press, Princeton, NJ, 1988.
    [233] Kneser, H. GeschlojJene Fli:ichen in dreidimensionalen Mannigfaltikeiten, Jahres-
    bericht der Deut. Math. Verein. 38 (1929), 248-260.

Free download pdf