1549312215-Complex_Analysis_for_Mathematics_and_Engineering_5th_edition__Mathews

(jair2018) #1
8.1 • THE RESIDUE THEOREM 299

where


. z^2 + 3z + 2


A = Res[zf(z),O] = hm = - 2,




    • 0 z - 1




B = Res[f,O] =Lim d zZ +^3 z +^2
•-O dz z - 1


= Lim (2z + 3)(z - 1) - ~z

2

+ 3z + 2) = _

5
and
z-o (z - 1) '

. z^2 + 3z + 2


C = Res[!, 1) = lim 2 = 6.

z - 1 Z

Thus,


z^2 + 3z+ 2 - 2 5 6
----z2 (z - 1) -- --z 2 - +z --z - 1 ·

-------~EXERCISES FOR SECTION 8 .1


  1. Find Res[f,O) for


(a) f(z)=z-^1 expz.
(b) f(z)=z-^3 cosh4z.

(c) f (z) = cscz.

(d) f(z)=z2+ 4z+5.
z^2 + z
(e) f (z) = cotz.
(f) f (z) = z -^3 cos z.
(g) J(z) = z-^1 sinz.

(h) f(z) = z2+~z+ 5.
z
(i) f (z) = exp (1 + ~).
(j) f (z) = z^4 sin(~).
(k) J (z) = z-^1 csc z.
(1) f (z) = z-^2 csc z.

(m) f (z) = exp(4z)-1.
sm^2 z

(n) f (z) = z-^1 csc^2 z.
Free download pdf