292 PH. MICHEL, ANALYTIC NUMBER THEORY AND FAMILIES OF £-FUNCTIONS
[Lin3] Linnik, Y. V., Ergodic properties of algebraic fields, ergebnisse Math, 45
Springer (1968).
[LY] Liu, J., Ye, Y.,Subconvexity for Rankin-Selberg L-functions for Maass forms,
Geom. Funct. Anal. 12 (2002), no. 6, 1296-1323.
[Lu] Luo, W. On the nonvanishing of Rankin-Selberg L-functions. Duke Math.
J. 69 (1993), no. 2, 411-425.
[Lu2] Luo, W. Nonvanishing of L-values and the Weyl law. Ann. Math. (2) 154,
No.2, 477-502 (2001).
[Lu3] Luo, W.Values of symmetric L-functions at 1, J. Reine Angew. Math. 506,
(1999), 215-235.
[LS] W. Luo, P. Sarnak, Quantum ergodicity of eigenfunctions on SL 2 (Z)\H,
Puhl. Math. IHES 81 (1995), 207-237.
[LRS] W. Luo, Z. Rudnick, and P. Sarnak, On Selberg's eigenvalue conjecture.
Geom. Funct. Anal. 5 (1995), no. 2, 387-401.
[LRS2] W. Luo, Z. Rudnick, and P. Sarnak, On the generalized Ramanujan con-
jecture for G L( n) in Automorphic Forms, Automorphic Representations,
and Arithmetic (Fort Worth, Tex., 1996), Proc. Sympos. Pure Math. 66,
Part 2, Amer. Math. Soc., Providence, 1999, 301-310.
[Me] T. Meurman, On the order of the Maass L-function on the critical
line. [CA] Number theory. Vol. I. Elementary and analytic, Proc. Conf.,
Budapest/ Hung. 1987, Colloq. Math. Soc. Janos Bolyai 51, 325-354
(1990).
[Mi] Ph. Michel, The subconvexity problem for Rankin-Selberg Lfunctions with
nebentypus and equidistribution of Heegner points, Ann. of Math. (2) 160
(2004), no. 1, 185-236.
[MiV] Ph. Michel, A. Venkatesh On the dimension of the space of cusp forms
associated to 2-dimensional complex Galois representations. International
Math. Research Notices. 2002:38 (2002) 2021-2027.
[MiS] S. Miller, and W. Schmid, Automorphic Distributions, L-functions, and
Voronoi Summation for GL(3), Annals of Math.(to appear).
[MWl] C. Moeglin, J.-L. Waldspurger,Le spectre residuel de GL(n), Ann. Sci.
Ecole Norm. Sup. (4), 22 (1989), 605-674.
[MW2] C. Moeglin, J.-L. Waldspurger,Spectral Decomposition and Eisenstein Se-
ries: Une paraphrase de l'Ecriture, Cambridge Tracts in Math. 113, Cam-
bridge Univ. Press, Cambridge, 1995.
[Mal] Molteni, G.,Upper and lower bounds at s = 1 for certain Dirichlet series
with Euler product, Duke Math. J., Volume 111Issue1, 133-158, 2001.
[Mon] Montgomery; Hugh L.Topics in Multiplicative Number Theory. Lecture
Notes in Mathematics, Vol. 227. Springer-Verlag, Berlin-New York, 1971.
ix+178 pp.
[Mo Va] Montgomery; H.L., Vaughan, R.: Extreme values of Dirichlet L-functions at
1, Number Theory in Progress (edts. Gyory; K., Iwaniec, H., Urbanowicz,
J.), de Gruyter, Berlin, 1999.
[Marl] Moreno, Carlos J. The method of Hadamard and de la Vallee-Poussin
(according to Pierre Deligne). Enseign. Math. (2) 29 (1983), no. 1-2,
89-128.
[Mor2] Moreno, Carlos J. Analytic proof of the strong multiplicity one theorem.
Amer. J. Math. 107 (1985), no. 1, 163-206.