2
0 1 0
cos 2sin sin cos 0 1 1 0
1 sin cos
x x x x
x x
cos 2sin 0x x or sin cosx x
i.e.,
tan^1
2
x or tan 1x
It has two solutions.
8.Sol: Given A A I^2 5 7 0
i.e., A A I^2 5 7
A A A A A IA.. ^1 5. ^1 7 ^1
A I A 5 7 ^1
i.e.,^1
(^15)
7
A I A
Statement-I is not correct
Now A A A I^2 2 3^2
A A I A A I5 7 2 3 ^2
5 7 2 3 1A A A A^2 ^2
3 5 7 10 A I A I
5 20A I
(^5) A I (^4)
9.Sol: Let
2
2
2
1 2
2 3 1 3 3 3 12
2 3 2 1 2 1
x x x x
x x x x ax
x x x x
Put x 1, we get
0 0 3
2 3 0 12
2 3 3
a
3(6 6) a (^12) 36 12 a
a 24
- Sol: Given the determinant
1 1
1 1
1 1
x
y
z
is non
negative. i.e.,
1 1
1 1 0
1 1
x
y
z
xyz x y z 2 0
using A.M-G.M inequality, we get
xyz 2 x y z xyz 3 1/3
(^) xyz 2 3 xyz1/3 0
Put xyz t^3
(^) t t^3 3 2 0
(^) t t (^2) 1 0^2
(^) t (^2) t^3 8
- Sol: We know k adj A k A n n^1
Here n A3; 5
i.e., 5 adj A 53 A^2
(^) 5 adjA 53 A^2 5 given
1
5
A
- Sol: Let
1 cos 1
sin 1 cos
1 sin 1
f
1 sin cos cos sin cos
1 sin^2 ^1
(^) 1 sin cos sin cos cos sin 1 ^2 ^2
(^) 2 2sin cos cos 2
(^) 2 sin 2 cos 2 (1)
Now, maximum value of f is
(^) 2 1 1 2 2^2 ^2
and minimum value of f is
8.Sol:
9.Sol:
- Sol:
11. Sol:
12. Sol:
13.Sol:
14.Sol:
2 1 1 2 2.^2 ^2
13.Sol: Given B^2 0 B^3 0,...Bn 0
Now
det 1 B^50 50 B
50 50 1 50 2 50 50
C C B C B 0 1 2 ... C B 50 50 B
50 50
C C B B 0 1 (^50)
50
C 0 1
14.Sol: Given
2
2 1 3 2
/ 2 1
(^1111) 1 3 4
2 2
r
r r r
n n a
n n n n