Exercise 12.1
Section12.2.2
AppendixC
12.1.PrincipalComponentAnalysis 563
amongstallpossibledirectionsorthogonaltothosealreadyconsidered.Ifwecon-
siderthegeneralcaseofanM-dimensionalprojectionspace,theoptimallinearpro-
jectionforwhichthevarianceoftheprojecteddataismaximizedisnowdefinedby
theMeigenvectorsU1,..., UMofthedatacovariancematrixS correspondingtothe
Mlargesteigenvalues>'1,... ,AM.Thisis easilyshownusingproofbyinduction.
Tosummarize,principalcomponentanalysisinvolvesevaluatingthemeanx
andthecovariancematrixSofthedatasetandthenfindingtheM eigenvectorsofS
correspondingtotheMlargesteigenvalues.Algorithmsforfindingeigenvectorsand
eigenvalues,aswellasadditionaltheoremsrelatedtoeigenvectordecomposition,
canbefoundinGolubandVanLoan(1996). Notethatthecomputationalcostof
computingthefulleigenvectordecompositionfora matrixofsizeDxDisO(D3).
IfweplantoprojectourdataontothefirstM principalcomponents,thenweonly
needtofindthefirstMeigenvaluesandeigenvectors.Thiscanbedonewithmore
efficienttechniques,suchasthepowermethod(GolubandVanLoan,1996),that
scalelikeO(MD^2 ),oralternativelywecanmakeuseoftheEMalgorithm.
12.1.2 Minimum-error formulation
WenowdiscussanalternativeformulationofpeAbasedonprojectionerror
minimization.Todothis,weintroducea completeorthonormalsetofD-dimensional
basisvectors{Ui}wherei= 1,...,Dthatsatisfy
(12.7)
Becausethisbasisis complete,eachdatapointcanberepresentedexactlybya linear
combinationofthebasisvectors
D
Xn= Laniui
i=l
(12.8)
wherethecoefficientsaniwillbedifferentfordifferentdatapoints. Thissimply
correspondstoa rotationofthecoordinatesystemtoa newsystemdefinedbythe
{Ui},andtheoriginalDcomponents{Xnl'...,XnD}arereplacedbyanequivalent
set{anl'...,anD}.TakingtheinnerproductwithUj,andmakinguseoftheor-
thonormalityproperty,weobtainanj= x;Uj,andsowithoutlossofgeneralitywe
canwrite
D
Xn= L (X~Ui)Ui·
i=l
(12.9)
(12.10)
Ourgoal,however,istoapproximatethisdatapointusinga representationin-
volvinga restrictednumberM <Dofvariablescorrespondingtoa projectiononto
a lower-dimensionalsubspace. TheM-dimensionallinearsubspacecanberepre-
sented,withoutlossofgenerality,bythefirstM ofthebasisvectors,andsowe
approximateeachdatapointXnby
M D
xn=L ZniUi+ L biUi
i=l i=M+l