564 12.CONTINUOUSLATENTVARIABLES
wherethe{Zni}dependontheparticulardatapoint,whereasthe{bdareconstants
thatarethesameforalldatapoints.Wearefreetochoosethe{Ui},the{Zni},and
the{bdsoastominimizethedistortion introducedbythereductionindimensional-
ity.Asourdistortionmeasure,weshallusethesquareddistancebetweentheoriginal
datapointXnanditsapproximationXn,averagedoverthedataset,sothatourgoal
is tominimize
N
J= ~L Ilxn - xn 112.
n=l
(12.11)
Considerfirstofalltheminimizationwithrespecttothequantities{Zni}.Sub-
stitutingforXn,settingthederivativewithrespecttoZnjtozero,andmakinguseof
theorthonormalityconditions,weobtain
(12.12)
wherej = 1,...,M.Similarly,settingthederivativeofJwithrespecttobitozero,
andagainmakinguseoftheorthonormalityrelations,gives
bj =-TX Uj (12.13)
wherej = M+1,...,D.IfwesubstituteforZniandbi,andmakeuseofthegeneral
expansion(12.9),weobtain
D
Xn- Xn = L {(Xn- x)TudUi
i=M+l
(12.14)
fromwhichweseethatthedisplacementvectorfromXn toxn liesinthespace
orthogonaltotheprincipalsubspace,becauseit isa linearcombinationof{udfor
i= M+1,...,D,asillustratedinFigure12.2.Thisis tobeexpectedbecausethe
projectedpointsxnmustliewithintheprincipalsubspace,butwecanmovethem
freelywithinthatsubspace,andsotheminimumerrorisgivenbytheorthogonal
projection.
Wethereforeobtainanexpression forthedistortionmeasureJasa function
purelyofthe{udintheform
1 ~ ~ (T _T)2 D T
J=NL L XnUi- X Ui = L UiSUi.
n=li=M+l i=M+l
(12.15)
ThereremainsthetaskofminimizingJwithrespecttothe{Ui},whichmust
bea constrainedminimizationotherwisewewillobtainthevacuousresultUi= O.
Theconstraintsarisefromtheorthonormalityconditionsand,asweshallsee,the
solutionwillbeexpressedintermsoftheeigenvectorexpansionofthecovariance
matrix.Beforeconsideringa formalsolution,letustryto obtainsomeintuitionabout