4 I. ElementaryTheoryofProbability
uponrealizationofconditions 8 belongstothesetA (definedin
anyway),thenwesaythattheeventAhastakenplace.
Example:Letthecomplex
3ofconditionsbethetossingofacointwotimes.ThesetofeventsmentionedinParagraph^con-
sistsofthefactthatateachtosseither
a
headortailmaycomeup.From
thisitfollowsthat
only
fourdifferentvariants (elementaryevents) arepossible,namely:HH,HT,TH,TT.Ifthe"event
A"connotestheoccurrence ofarepetition, thenitwillconsistofa
happeningofeitherofthefirstorfourthofthefourelementary
events.Inthismanner,everyeventmayberegardedasasetofelementaryevents.4)Undercertainconditions,which
weshallnotdiscusshere,wemay
assumethattoaneventAwhichmayormaynotoccurunderconditions8, is assignedareal numberP(A) whichhasthefollowingcharacteristics
:(a) Onecanbepracticallycertainthatifthecomplexofcon-ditions
6isrepeatedalargenumberoftimes,n,thenifmbethenumberofoccurrencesofeventA,
theratiom/nwill
differveryslightlyfromP(A
).(b) IfP(A) isverysmall,onecanbepracticallycertainthatwhenconditions@arerealizedonlyonce,theeventAwouldnotoccuratall.TheEmpirical
DeductionoftheAxioms.Ingeneral,onemayassumethatthesystem
goftheobservedeventsA,B,C, ...towhichareassigneddefiniteprobabilities,formafieldcontainingas an element the set E (Axioms I, II, and the first part ofIII, postulating theexistence of probabilities). Itis clearthatO^m/n^l
sothatthesecondpartofAxiomIIIisquitenatural.For
theeventE,misalwaysequal
ton,sothatitisnaturaltopostulate ?(E)=
(Axiom IV).If, finally,
A andBare non-intersecting (incompatible),thenm—
m
1+m
2wherem,m
ltm
2arerespectivelythenumberofexperimentsinwhichtheeventsA +B,A,andBoccur.Fromthisitfollowsthatm m
1m
2n n nIttherefore
seemsappropriate
topostulate that P(A +B)—P(A) +P(J5) (Axiom V).