Foundations of the theory of probability

(Jeff_L) #1
I.

ElementaryTheoryof

Probability

Theory
of

Sets


  1. The


complementary set


  1. A


=
0.


  1. A


=
E.


  1. Thesystem 51 ofthesets


A
lt

A
2

,

. ..
,


A

n

formsa de-

compositionof

theset
Eif

A
1


+A
2

+...+A
n

=
E.

(This assumes that

the

sets
At

donotintersect,in

pairs.)


  1. Bisasubsetof


A:2?
t

cA.

RandomEvents


  1. The opposite event A


consisting of the non-occur-

ence

ofeventA.

6.

EventAisimpossible.


  1. EventA


mustoccur.

8.

Experiment
%consistsof

determining which of

the

eventsA
u

A
2 ,

...
,

A
n

occurs.

WethereforecallA
l

A
2
,

..
.

,

A
n

the possibleresults ofex-

periment
51.


  1. From theoccurrence


of

eventBfollowstheinevitable

occurrence ofA.

§


  1. ImmediateCorollariesoftheAxioms;Conditional


Probabilities;Theorem

ofBayes

FromA
+

A

=
E
andthe

AxiomsIVandV itfollowsthat

P(A) +P(A)

=

(1)

P(A)

=1—
P(A).
(2)

SinceE

=
0,then,inparticular,

P(0)=0. (3)

IfA,B,..
.

,Nareincompatible,thenfrom

Axiom
V

follows

theformula (theAdditionTheorem)

P(A+£+... +N)=P(A) + P(£)+...+

P(N)

IfP(A)>0,thenthequotient

P(AB)

(4)

?a(B)

=

P(A)

(5)

isdefinedtobetheconditionalprobabilityofthe eventB

under

thecondition
A.

From (5) itfollows immediatelythat
Free download pdf