I.
ElementaryTheoryof
Probability
Theory
of
Sets
- The
complementary set
- A
=
0.
- A
=
E.
- Thesystem 51 ofthesets
A
lt
A
2
,
. ..
,
A
n
formsa de-
compositionof
theset
Eif
A
1
+A
2
+...+A
n
=
E.
(This assumes that
the
sets
At
donotintersect,in
pairs.)
- Bisasubsetof
A:2?
t
cA.
RandomEvents
- The opposite event A
consisting of the non-occur-
ence
ofeventA.
6.
EventAisimpossible.
- EventA
mustoccur.
8.
Experiment
%consistsof
determining which of
the
eventsA
u
A
2 ,
...
,
A
n
occurs.
WethereforecallA
l
A
2
,
..
.
,
A
n
the possibleresults ofex-
periment
51.
- From theoccurrence
of
eventBfollowstheinevitable
occurrence ofA.
§
- ImmediateCorollariesoftheAxioms;Conditional
Probabilities;Theorem
ofBayes
FromA
+
A
=
E
andthe
AxiomsIVandV itfollowsthat
P(A) +P(A)
=
(1)
P(A)
=1—
P(A).
(2)
SinceE
=
0,then,inparticular,
P(0)=0. (3)
IfA,B,..
.
,Nareincompatible,thenfrom
Axiom
V
follows
theformula (theAdditionTheorem)
P(A+£+... +N)=P(A) + P(£)+...+
P(N)
IfP(A)>0,thenthequotient
P(AB)
(4)
?a(B)
=
P(A)
(5)
isdefinedtobetheconditionalprobabilityofthe eventB
under
thecondition
A.
From (5) itfollows immediatelythat