8 I. ElementaryTheoryofProbability
A
ltA
2 ,...
,A
nareoften called "hypotheses"andformula(14) is consideredas the probabilityP*(A{)of thehypothesisAi
after the occurrence of event X. [P(A*) then denotes theaprioriprobabilityofA*.]Proof:From
(12)we
havePWP^(X)Px(Ai)P(X)To
obtaintheformula(14) itonlyremainstosubstitutefortheprobability P(X) itsvalue derivedfrom (13) by applyingthetheoremontotalprobability.§- Independence
Theconceptofmutualindependence oftwo ormoreexperi-mentsholds,in
acertainsense,
acentral
positioninthe
theoryofprobability. Indeed, as we have already seen, the theory ofprobabilitycanberegardedfromthemathematicalpointofviewasaspecialapplicationofthegeneraltheoryofadditivesetfunc-tions. Onenaturally asks,howdid ithappenthatthetheoryofprobabilitydeveloped intoalargeindividual sciencepossessingitsownmethods?Inorder
toanswerthisquestion,
wemustpointoutthespe-cializationundergonebygeneralproblemsinthetheoryofaddi-tive set functions when they are proposed in the theory ofprobability.Thefactthatouradditivesetfunction P(A) isnon-negativeandsatisfiestheconditionP(E)=1,doesnotinitselfcausenewdifficulties.
Random variables (see Chap.Ill) from
amathe-maticalpointofviewrepresentmerelyfunctionsmeasurablewithrespect to P(A), while their mathematical expectations areabstract Lebesgueintegrals. (ThisanalogywasexplainedfullyforthefirsttimeintheworkofFrechet6.)Themereintroductionoftheaboveconcepts,therefore,would notbesufficienttopro-duceabasisfor
thedevelopmentof
alargenewtheory.Historically, the independenceof experiments and randomvariablesrepresentstheverymathematicalconceptthathasgiventhetheoryof probabilityitspeculiarstamp.TheclassicalworkorLaPlace,Poisson,Tchebychev,Markov,Liapounov,Mises,and•SeeFrechet
[1]and
[2].