§
- ConditionalProbabilitiesasRandomVariables,
MarkovChains
13
P
m
(A?)=
P(Af)
q=\,2,...,r
2
.
Givenanydecompositions (experiments) 5l
(1)
,
5l
(2)
,
...
,
9l
(n)
,
we
we
shallrepresentby
2l
(1
>2l
(2)
..
.$
(»>
thedecomposition
ofsetEintotheproducts
Experiments3i
(1
\
2l
(2)
,...
,
%
(n)
are
mutuallyindependentwhen
andonlywhen
p
gB1
,
a
,»...p.
1
,(4»)
=P(4'),
kand
q
beingarbitrary
14
.
Definition: Thesequence
3l
(1)
,$
(2)
,
...
,5l
(n)
,
...forms
aMarkovchain ifforarbitraryn
and
q
P«»>«<«
...w-«>
W)
=Pa(n-D(4
n)
).
Thus, Markov chains form a natural generalization of se-
quencesofmutuallyindependentexperiments.Ifwe
set
pQmgn
(m,n)=
P
A
™
(A™)
m<n
,
thenthebasicformulaofthetheoryofMarkovchainswillassume
theform:
pQkqn
(k>n)==
*Zpqkqm
(k,m)
pgmqH
(m,n)
y
k<m<n.
(1)
Qm
Ifwedenotethematrix
\\pqmgn
(nt,n)\\
by
p(m,ri),
(1)
canbe
writtenas
15
:
p(k,n)
—
p(k,m)p(m,n) k<m<n.
(2)
14
ThenecessityoftheseconditionsfollowsfromTheoremII,
§ 5
;thatthey
arealso sufficient follows immediatelyfrom the Multiplication Theorem
(Formula
(7)
of
§4).
16
ForfurtherdevelopmentofthetheoryofMarkovchains,seeR.v.Mises
[1],§16,
andB.Hostinsky,Methodesgenerates
ducalculdes
probabilites,
"Mem.Sci.Math."V.52,Paris1931.