Chapter
II
INFINITE PROBABILITY FIELDS
§
- AxiomofContinuity
Wedenote
by 2)A
m
,asis
customary,
theproductofthe
sets
m
A
m
(whetherfiniteorinfiniteinnumber)andtheirsumby <5A
m
.
m
OnlyinthecaseofdisjointsetsA
m
istheform
^A
m
used
instead
m
of <&A
m
. Consequently,
m
®A
m
=A
1
+
A
t
+
•;
ZAm
=A
1
+
A
2
+---,
m
^A
m
=A
1
A
2
"-.
Inallfutureinvestigations,weshallassumethatbesidesAxioms
I
- V,still anotherholdstrue
:
VI. For
adecreasing sequenceofevents
A
1
z)A
2
^-"
3^
n
z>.-. (1)
of
&
forwhich
®A
»
=
,
(2)
the
following
equation holds:
limP
(4n)
=
. w-*oo
(3)
Inthefutureweshalldesignate byprobabilityfieldonlya
field ofprobabilityas outlined inthefirst chapter, whichalso
satisfiesAxiomVI.Thefieldsofprobability
as
definedinthefirst
chapterwithoutAxiom
VImightbecalled
generalized
fieldsof
probability.
Ifthesystem
J
ofsetsisfinite,AxiomVIfollowsfromAxioms
I
- V.Foractually,inthatcasethereexistonlyafinitenumber
of different sets in the sequence
(1).
Let A
k
be the smallest
amongthem,thenallsetsA^coincidewithA
k
andweobtainthen
14