Foundations of the theory of probability

(Jeff_L) #1
Chapter

II

INFINITE PROBABILITY FIELDS

§


  1. AxiomofContinuity


Wedenote
by 2)A
m

,asis

customary,
theproductofthe

sets

m

A
m


(whetherfiniteorinfiniteinnumber)andtheirsumby <5A

m

.

m

OnlyinthecaseofdisjointsetsA
m

istheform
^A

m

used
instead

m

of <&A
m


. Consequently,


m

®A

m

=A

1

+

A

t

+

•;

ZAm

=A

1

+

A

2

+---,

m

^A
m

=A

1

A

2

"-.

Inallfutureinvestigations,weshallassumethatbesidesAxioms

I


  • V,still anotherholdstrue


:

VI. For
adecreasing sequenceofevents

A

1

z)A

2

^-"

3^

n

z>.-. (1)

of
&

forwhich

®A

»

=

,
(2)

the
following

equation holds:

limP
(4n)

=

. w-*oo


(3)

Inthefutureweshalldesignate byprobabilityfieldonlya

field ofprobabilityas outlined inthefirst chapter, whichalso

satisfiesAxiomVI.Thefieldsofprobability
as

definedinthefirst

chapterwithoutAxiom
VImightbecalled

generalized
fieldsof

probability.


Ifthesystem

J

ofsetsisfinite,AxiomVIfollowsfromAxioms

I


  • V.Foractually,inthatcasethereexistonlyafinitenumber


of different sets in the sequence
(1).

Let A
k

be the smallest

amongthem,thenallsetsA^coincidewithA
k

andweobtainthen

14
Free download pdf