ChapterIIINFINITE PROBABILITY FIELDS§- AxiomofContinuity
Wedenote
by 2)A
m,asiscustomary,
theproductofthesetsmA
m
(whetherfiniteorinfiniteinnumber)andtheirsumby <5Am.mOnlyinthecaseofdisjointsetsA
mistheform
^Amused
insteadmof <&A
m
. Consequently,
m®Am=A1+At+•;ZAm=A1+A2+---,m^A
m=A1A2"-.Inallfutureinvestigations,weshallassumethatbesidesAxiomsI- V,still anotherholdstrue
:VI. For
adecreasing sequenceofeventsA1z)A2^-"3^nz>.-. (1)of
&forwhich®A»=,
(2)the
followingequation holds:limP
(4n)=. w-*oo
(3)Inthefutureweshalldesignate byprobabilityfieldonlyafield ofprobabilityas outlined inthefirst chapter, whichalsosatisfiesAxiomVI.Thefieldsofprobability
asdefinedinthefirstchapterwithoutAxiom
VImightbecalledgeneralized
fieldsofprobability.
IfthesystemJofsetsisfinite,AxiomVIfollowsfromAxiomsI- V.Foractually,inthatcasethereexistonlyafinitenumber
of different sets in the sequence
(1).Let A
kbe the smallestamongthem,thenallsetsA^coincidewithA
kandweobtainthen14