§1. AxiomofContinuity 15nlimP(^B)=P(o)=
0.Allexamplesof
finitefieldsofprobability, inthefirstchapter,satisfy,therefore, AxiomVI.The systemofAxioms I- VIthen
provestobeconsistentandincomplete.Forinfinitefields,ontheotherhand,theAxiomofContinuity,VI,provedtobeindependentofAxiomsI- V.Sincethenewaxiom
isessentialforinfinitefieldsofprobabilityonly,itisalmostim-possibletoelucidateitsempiricalmeaning,
as
hasbeendone,forexample,inthecaseofAxioms I
Vin
§2 ofthefirstchapter.For,indescribinganyobservablerandomprocesswe
canobtainonlyfinitefieldsofprobability.Infinitefieldsofprobabilityoccur
onlyasidealizedmodels
ofreal
randomprocesses.Welimitour-selves,arbitrarily,to
onlythosemodelswhichsatisfyAxiomVI.
This limitation hasbeenfound expedient in researches of the
mostdiversesort.
GeneralizedAdditionTheorem:
//A
ltA,,...
,A
n,.. .andAbelongto
ft,
then
fromA=Z
A
n(4)followstheequation
Proof: LetThen,obviously
^(R
n
)=0,nand,therefore,
accordingtoAxiomVI
limP(Rn)= fi-»oo- (6)
Onthe
otherhand,bytheadditiontheorem
P(A)=
P(A
1 ) +P(A2) +...+P(A
n) +P(Rn). (7)
From
(6)and
(7) weimmediatelyobtain
(5).Wehaveshown,
then, that theprobability
P(A) isa com-pletelyadditive
setfunctionon
$.
Conversely,
AxiomsVandVIholdtrue
for everycompletelyadditive
setfunctiondefinedon
nP{A)=2P(An).
(5)n