Foundations of the theory of probability

(Jeff_L) #1
§1. AxiomofContinuity 15

n

limP(^

B)

=P(o)=
0.

Allexamplesof
finite

fieldsofprobability, inthefirstchapter,

satisfy,therefore, AxiomVI.The systemofAxioms I


  • VIthen


provestobeconsistentandincomplete.

Forinfinitefields,ontheotherhand,theAxiomofContinuity,

VI,provedtobeindependentofAxiomsI


  • V.Sincethenewaxiom


isessentialforinfinitefieldsofprobabilityonly,itisalmostim-

possibletoelucidateitsempiricalmeaning,
as


hasbeendone,for

example,inthecaseofAxioms I






V

in
§

2 ofthefirstchapter.

For,indescribinganyobservablerandomprocesswe
can

obtain

onlyfinitefieldsofprobability.Infinitefieldsofprobabilityoccur


onlyasidealizedmodels
of

real
randomprocesses.Welimitour-

selves,arbitrarily,to
onlythosemodelswhichsatisfyAxiomVI.


This limitation hasbeenfound expedient in researches of the


mostdiversesort.


GeneralizedAdditionTheorem:
//

A
lt

A,,...
,

A
n,

.. .and

Abelongto
ft,


then
from

A=Z

A
n

(4)

followstheequation


Proof: Let

Then,obviously
^(R
n


)

=

0,

n

and,therefore,
accordingtoAxiomVI


limP(R

n)

= fi-»oo


  • (6)


Onthe
otherhand,bytheadditiontheorem


P(A)

=
P(A
1 ) +

P(A

2

) +...+P(A
n) +

P(R

n)

. (7)


From
(6)

and
(7) weimmediatelyobtain
(5).

Wehaveshown,
then, that theprobability
P(A) isa com-

pletelyadditive
setfunctionon
$.


Conversely,
AxiomsVandVI

holdtrue
for everycompletelyadditive
setfunctiondefinedon


n

P{A)=2P(A

n

).
(5)

n
Free download pdf