§1. AxiomofContinuity 15
n
limP(^
B)
=P(o)=
0.
Allexamplesof
finite
fieldsofprobability, inthefirstchapter,
satisfy,therefore, AxiomVI.The systemofAxioms I
- VIthen
provestobeconsistentandincomplete.
Forinfinitefields,ontheotherhand,theAxiomofContinuity,
VI,provedtobeindependentofAxiomsI
- V.Sincethenewaxiom
isessentialforinfinitefieldsofprobabilityonly,itisalmostim-
possibletoelucidateitsempiricalmeaning,
as
hasbeendone,for
example,inthecaseofAxioms I
V
in
§
2 ofthefirstchapter.
For,indescribinganyobservablerandomprocesswe
can
obtain
onlyfinitefieldsofprobability.Infinitefieldsofprobabilityoccur
onlyasidealizedmodels
of
real
randomprocesses.Welimitour-
selves,arbitrarily,to
onlythosemodelswhichsatisfyAxiomVI.
This limitation hasbeenfound expedient in researches of the
mostdiversesort.
GeneralizedAdditionTheorem:
//
A
lt
A,,...
,
A
n,
.. .and
Abelongto
ft,
then
from
A=Z
A
n
(4)
followstheequation
Proof: Let
Then,obviously
^(R
n
)
=
0,
n
and,therefore,
accordingtoAxiomVI
limP(R
n)
= fi-»oo
- (6)
Onthe
otherhand,bytheadditiontheorem
P(A)
=
P(A
1 ) +
P(A
2
) +...+P(A
n) +
P(R
n)
. (7)
From
(6)
and
(7) weimmediatelyobtain
(5).
Wehaveshown,
then, that theprobability
P(A) isa com-
pletelyadditive
setfunctionon
$.
Conversely,
AxiomsVandVI
holdtrue
for everycompletelyadditive
setfunctiondefinedon
n
P{A)=2P(A
n
).
(5)
n