16 II. InfiniteProbabilityFieldsanyfield g.*Wecan, therefore, definetheconcept
ofafield of
probabilityinthefollowingway:LetEbeanarbitraryset,
% a
field
of
subsets
ofE,containingE,and?(A)
anon-negativecom-pletely
additive
set
functiondefined ongf; thefield
5togetherwiththeset
function?(A)
formsafield
ofprobability.ACoveringTheorem://A,A
ltA
2 ,..
.,A
n
,...belongtogand
Aa(BAn i (8)nthen
Proof:A=
A<S(AH)=AAt+A(A2- A
2AX)+A(A3- A
3A2- A
3AJ+,n?{A)=?(AAX)+P{A(A2- A
2A,)}
+...^P(^)
+P(^)
+••••§- BorelFieldsofProbability
Thefield
5iscalled aBorel
field,ifallcountable
sums2^»ofthesetsAnfrom
gfbelongto
g.Borel
fieldsarealso
calledcom-pletely
additivesystemsofsets.Fromtheformula<SA
n=A1+(A2- A
2AX)+(A3- A
3A2- A
ZAX)+- •
(1)
nwecandeducethat
aBorelfieldcontains
alsoallthesums <5A
nncomposedof
acountablenumber
ofsets
A»belonging
toit.Fromtheformula%A
n=E-(BAn(2)n nthesamecanbesaidfortheproductofsets.A
field of probability is a Borelfield of probability
ifthecorresponding field
%isaBorelfield.OnlyinthecaseofBorelfieldsofprobabilitydoweobtainfullfreedomofaction,withoutdangerof theoccurrence of events having no probability. Weshallnowprovethatwemaylimitourselves
totheinvestigationofBorelfieldsofprobability.Thiswill
followfromtheso-calledextensiontheorem, towhichweshallnowturn.Given
afieldofprobability
(5,P).Asisknown1,thereexistsasmallestBorelfieldB^containing5-And
wehavethe*See,forexample,O.Nikodym,Surunegeneralisationdes
integratesdeM.J.Radon,Fund.Math.v.15,1930,p.136.1Hausdorff,Mengenlehre,
1927,p.85.