16 II. InfiniteProbabilityFields
anyfield g.*Wecan, therefore, definetheconcept
ofafield of
probabilityinthefollowingway:LetEbeanarbitraryset,
% a
field
of
subsets
of
E,containingE,and?(A)
anon-negativecom-
pletely
additive
set
functiondefined ongf; thefield
5
together
withtheset
function
?(A)
formsafield
of
probability.
ACoveringTheorem://A,A
lt
A
2 ,
..
.
,A
n
,
...belongto
g
and
Aa(BA
n i (8)
n
then
Proof:
A
=
A<S(A
H
)
=AA
t
+
A
(A
2
- A
2
A
X
)
+
A(A
3
- A
3
A
2
- A
3
AJ+
,
n
?{A)
=?(AA
X
)
+
P{A(A
2
- A
2
A,)}
+
...
^
P(^)
+
P(^)
+
••••
§
- BorelFieldsofProbability
Thefield
5
iscalled aBorel
field,
ifallcountable
sums2^»
ofthesetsA
n
from
gf
belongto
g.
Borel
fieldsare
also
called
com-
pletely
additivesystemsofsets.Fromtheformula
<SA
n
=A
1
+
(A
2
- A
2
A
X)
+
(A
3
- A
3
A
2
- A
Z
A
X
)
+
- •
(1)
n
wecandeducethat
a
Borelfieldcontains
alsoallthesums <5A
n
n
composedof
a
countablenumber
of
sets
A»
belonging
toit.
From
theformula
%A
n
=E-(BA
n
(2)
n n
thesamecanbesaidfortheproductofsets.
A
field of probability is a Borelfield of probability
if
the
corresponding field
%
isaBorelfield.OnlyinthecaseofBorel
fieldsofprobabilitydoweobtainfullfreedomofaction,without
dangerof theoccurrence of events having no probability. We
shallnowprovethatwemay
limitourselves
to
theinvestigation
ofBorelfieldsofprobability.This
will
followfrom
theso-called
extensiontheorem, towhichweshallnowturn.
Given
a
fieldofprobability
(5,
P).Asisknown
1
,
thereexists
asmallestBorelfieldB^containing5-
And
wehavethe
*
See,forexample,O.Nikodym,Surunegeneralisation
des
integratesde
M.J.Radon,Fund.Math.v.15,1930,p.136.
1
Hausdorff,Mengenlehre,
1927,
p.85.