Foundations of the theory of probability

(Jeff_L) #1
16 II. InfiniteProbabilityFields

anyfield g.*Wecan, therefore, definetheconcept
ofafield of


probabilityinthefollowingway:LetEbeanarbitraryset,
% a


field
of


subsets
of

E,containingE,and?(A)
anon-negativecom-

pletely
additive


set
functiondefined ongf; thefield
5

together

withtheset
function

?(A)
formsafield
of

probability.

ACoveringTheorem://A,A
lt

A
2 ,

..
.

,A
n
,

...belongto

g

and


Aa(BA

n i (8)

n

then


Proof:

A

=
A<S(A

H

)

=AA

t

+

A

(A

2


  • A


2

A

X

)

+

A(A

3


  • A


3

A

2


  • A


3

AJ+









,

n

?{A)

=?(AA

X

)

+

P{A(A

2


  • A


2

A,)}
+

...

^

P(^)
+

P(^)
+

••••

§


  1. BorelFieldsofProbability


Thefield
5

iscalled aBorel
field,

ifallcountable
sums2^»

ofthesetsA

n

from
gf

belongto
g.

Borel
fieldsare

also
called

com-

pletely
additivesystemsofsets.Fromtheformula

<SA
n

=A

1

+

(A

2


  • A


2

A

X)

+

(A

3


  • A


3

A

2


  • A


Z

A

X

)

+



  • (1)


n

wecandeducethat
a

Borelfieldcontains
alsoallthesums <5A
n

n

composedof
a

countablenumber
of

sets

belonging
toit.

From

theformula

%A
n

=E-(BA

n

(2)

n n

thesamecanbesaidfortheproductofsets.

A
field of probability is a Borelfield of probability
if

the

corresponding field
%

isaBorelfield.OnlyinthecaseofBorel

fieldsofprobabilitydoweobtainfullfreedomofaction,without

dangerof theoccurrence of events having no probability. We

shallnowprovethatwemay

limitourselves
to

theinvestigation

ofBorelfieldsofprobability.This

will
followfrom

theso-called

extensiontheorem, towhichweshallnowturn.

Given
a

fieldofprobability
(5,

P).Asisknown

1

,

thereexists

asmallestBorelfieldB^containing5-

And
wehavethe

*

See,forexample,O.Nikodym,Surunegeneralisation

des
integratesde

M.J.Radon,Fund.Math.v.15,1930,p.136.

1

Hausdorff,Mengenlehre,
1927,

p.85.
Free download pdf