§- BorelFieldsofProbability 17
ExtensionTheorem: Itisalwayspossible
toextend
anon-negative completely additive set functionP(A),
definedin%,to all sets
ofB%without losing either
ofitsproperties (non-negativeness andcompleteadditivity) and this canbe done
inonlyoneway.The extended field B% forms with the extended set func-tion
P(A)
afieldofprobability (B%,P).Thisfieldofprobability(B%,P)weshallcalltheBorel
extensionofthe
field($,P).The proof of thistheorem, which belongsto the theory ofadditive set functions and which sometimes appears in otherforms,canbegivenasfollows:LetAbeanysubsetofE
;weshalldenotebyP*(A) thelowerlimitofthesumsy:p(An)nforall coveringsAcz(SA
nnofthesetAbyafiniteorcountablenumberofsetsA„of$•Itiseasy to prove that P*(A) is then an outer measure in theCaratheodorysense2. Inaccordance withtheCoveringTheorem
(51),P*(A)
coincideswith
P(A) forall
setsof
8f.Itcanbefur-ther
shownthatallsetsof
$aremeasurableintheCaratheodorysense.SinceallmeasurablesetsformaBorelfield,allsetsofB%areconsequently measurable.Thesetfunction P*(A) is,there-fore,completelyadditiveonB%,and
onB%wemaysetP(A)=
P*(A).Wehavethusshowntheexistenceoftheextension.Theunique-ness of this extension follows immediately from the minimalpropertyofthefieldB%.Remark:Even
ifthesets (events) Aof
5canbeinterpretedas
actual and (perhapsonlyapproximately) observableevents,it
doesnot,ofcourse,followfromthisthatthesetsoftheextendedfield
B%reasonablyadmitofsuchaninterpretation.Thusthereisthepossibilitythatwhileafield ofprobability(5,P) may be regardedastheimage (idealized, however) of2Caratheodory, VorlesungeniiberreelleFunktionen,
pp.237-258. (New-York,ChelseaPublishingCompany).