Foundations of the theory of probability

(Jeff_L) #1
§

3.ExamplesofInfiniteFieldsofProbability 19

P(A) on
3

which satisfies

thecondition P(E)

=


  1. As is well


known

3

,suchafunctionis

uniquelydeterminedbyits values

P[-oo;x)
=F(x) (1)

forthespecialintervals


[-<*>;
x).The

functionF(x) iscalledthe

distributionfunction
of

£. Furtheron

(Chap.Ill,
§2)

weshall

shownthatF(x) is non-decreasing,continuous

ontheleft,and

hasthefollowinglimitingvalues

:

limF(x)

=i^-oc)=
6,

limF(x)=F(
+

oo)=
1

.
(2)

*—


oo a;

->-»-oo

Conversely,if agiven functionF(x) satisfiesthese

conditions,

thenitalwaysdeterminesanon-negativecompletelyadditiveset-


functionP(A) forwhichP(E)

=
l

4

.

IV. LetusnowconsiderthebasicsetE asann-dimensional

Euclidianspace R

n

,

i.e.,thesetofallorderedn-tuples
£

=
{x

u

x
2
,

...,x
nj

ofrealnumbers.Let
$

consist,inthiscase,ofall

Borel

point-sets

5

ofthe spaceR

n

. Onthebasisofreasoninganalogous


tothatusedinExampleII,weneednotinvestigatenarrowersys-

temsofsets,forexamplethesystemsofn-dimensionalintervals.

Theroleofprobabilityfunction P(A) will be playedhere,

as always, by any non-negative and completely
additive set-

functiondefinedon
$

and
satisfyingtheconditionP(E)

=1.
Such

aset-functionisdetermineduniquelyifweassignitsvalues

P{L

aiai...an)

=F{a
lt

a

2

,...,a
n)

(3)

forthe special setsL

aia%

„,
an

,

where L

aia,...an

represents the

aggregateofall
£

forwhich
Xi<Oi

(i

=

1,2,

...
,

n).

ForourfunctionF(a
lf

a
2
,

..

.

,a
n)

wemaychooseanyfunction

whichforeachvariableisnon-decreasing
andcontinuousonthe

left,andwhichsatisfies
the

followingconditions

:

lim F(a

v

a

2>

...,«„)

=
F(a

v

.
.
.,«i_i,

—oo,a

i+1

,...,#„)

=0,

"—~

t=
4,2i

....,»

f

lim F(a

v

a

2

,..

.,a

n

)

=F(+oo,+00,...,-foo)

=
1.

Oi

->
+00,Oj

->
+00,...,o»


-t-00

F(a
u

a
2 ,

..
.

,a
n)

iscalledthedistributionfunctionofthevari-

ables
a?i,x
2 ,

..
.

,x
n

.

3

Cf
.,

forexample,Lebesgue, LegonssurVintegration, 1928,
p.

152-156.

*

Seethepreviousnote.

8

ForadefinitionofBorelsetsinR

n

seeHausdorff,
Mengenlehre,1927,

pp.177-181.
Free download pdf