20 II. InfiniteProbabilityFieldsThe investigation offields of
probability oftheabovetypeissufficientforallclassicalproblems
in
the
theoryofprobability6.Inparticular,
aprobabilityfunctioninRncanbe definedthus:Wetakeanynon-negativepointfunction
f(xux
2 ,. ..
,
x
n
)definedinRn,suchthat+00 +00 +90jj...jf(xltx2,...,xn)dx1dx2...dxn=\—00 —00andsetP(A)=
//•••ff(xi>x2>••.,xn)dx1dx2...dxn.
(5)Af(x
u
x
2 ,...
,
x
n)is,inthiscase,theprobabilitydensityatthepoint (x
ux
2 ,...
,x
n
)(cf.Chap.Ill,
§2).AnothertypeofprobabilityfunctioninRnisobtainedinthefollowingmanner: Let
{£.}
be
asequence
ofpoints
ofRn,andlet
{pi}
be asequence ofnon-negative realnumbers, suchthat£pi=
1 ;wethenset,aswedidinExampleI,P(A)=Z'Vi,wherethesummation2'
extendsoverall indicesiforwhich£belongstoA.Thetwo
typesof
probabilityfunctionsinRnmen-tionedheredonotexhaustallpossibilities,butareusuallycon-sideredsufficient for applications of the theoryof probability.Nevertheless, wecan imagineproblems ofinterest forapplica-tionsoutsideofthisclassicalregioninwhichelementaryeventsaredefinedbymeansofan infinitenumberofcoordinates. Thecorrespondingfieldsof probability weshallstudymore closelyafterintroducingseveralconceptsneededforthispurpose. (Cf.Chap.Ill,
§3).6Cf.,forexample,R.v.Mises
[1],pp.13-19.
Heretheexistenceofproba-bilities for "all practically possible"sets ofan n-dimensional spaceisrequired.