18 II. InfiniteProbabilityFieldsactualrandomevents,the extendedfield
ofprobability (B%, P)willstill remainmerelyamathematical
structure.
Thus setsof
B%are
generallymerelyideal eventstowhichnothingcorrespondsin
theoutsideworld.However,ifreasoning
which
utilizestheprobabilitiesofsuchidealeventsleadsustoa
determinationofthe probabilityof anactual eventof
g,then,from an empirical point of view also, this determination will
automaticallyfailtobecontradictory.§- ExamplesofInfiniteFieldsofProbability
I. In
§1 of thefirst chapter, wehave constructed variousfiniteprobabilityfields.
Letnow
E={£x,
£ 2>•••>
ln»- •}
beacountable
set,andlet5coincidewiththeaggregateofthesubsetsofE.
Allpossibleprobability fieldswithsuchanaggregate
5areobtainedinthefollowingmanner:Wetake
asequenceofnon-negativenumbersp„,suchthatPi+Vi+...
+
Vn+•••= 1andforeachsetAput
P(A) -
2'fin,nwherethesummation
2'
extendstoalltheindicesn forwhich$n
belongs toA. Thesefields ofprobabilityareobviously Borelfields.
II. In thisexample, weshallassumethat E represents therealnumber
axis. Atfirst,let
g
beformedofallpossiblefinitesums of half-open intervals [a; b)
— {a£.tj<b}
(taking intoconsiderationnotonlytheproperintervals,withfiniteaandb,
butalsotheimproper intervals [-
<x>;a), [a,-+ oo) and [-o©j4-oo)).
gisthenafield.Bymeansoftheextensiontheorem,how-ever, eachfieldofprobabilityon
5
canbeextendedtoasimilarfield onB%. The system
of sets
B% is, therefore, in our casenothingbutthesystemofall
Borelpointsets on
aline. Letusturnnowtothefollowingcase.
III. AgainsupposeEtobetherealnumberaxis,whilegiscomposedofallBorelpointsetsofthisline.Inordertoconstruct
a field of probability with thegiven field
gf,
it is sufficienttodefineanarbitrarynon-negativecompletelyadditiveset-function