20 II. InfiniteProbabilityFields
The investigation offields of
probability oftheabovetype
issufficientforallclassicalproblems
in
the
theoryof
probability
6
.
Inparticular,
aprobabilityfunctioninR
n
canbe definedthus:
Wetakeanynon-negativepointfunction
f(xu
x
2 ,
. ..
,
x
n
)
definedinR
n
,
suchthat
+00 +00 +90
j
j
...j
f(x
lt
x
2
,...,x
n
)dx
1
dx
2
...dx
n
=\
—00 —00
andset
P
(
A
)
=
//•••
ff(
x
i>
x
2>
••
.,x
n
)dx
1
dx
2
...dx
n
.
(5)
A
f(x
u
x
2 ,
...
,
x
n)
is,inthiscase,theprobabilitydensityatthe
point (x
u
x
2 ,
...
,
x
n
)
(cf.Chap.Ill,
§2).
AnothertypeofprobabilityfunctioninR
n
isobtainedinthe
followingmanner: Let
{£.}
be
a
sequence
of
points
ofR
n
,
and
let
{pi}
be asequence ofnon-negative realnumbers, suchthat
£pi
=
1 ;wethenset,aswedidinExampleI,
P(A)
=Z'Vi,
wherethesummation
2'
extendsoverall indicesiforwhich
£
belongstoA.Thetwo
typesof
probabilityfunctionsinR
n
men-
tionedheredonotexhaustallpossibilities,butare
usuallycon-
sideredsufficient for applications of the theoryof probability.
Nevertheless, wecan imagineproblems ofinterest forapplica-
tionsoutsideofthisclassicalregioninwhichelementaryevents
aredefinedbymeansofan infinitenumberofcoordinates. The
correspondingfieldsof probability weshallstudymore closely
afterintroducingseveralconceptsneededforthispurpose. (Cf.
Chap.Ill,
§3).
6
Cf.,forexample,R.v.Mises
[1],pp.
13-19.
Heretheexistenceof
proba-
bilities for "all practically possible"sets ofan n-dimensional space
is
required.