Foundations of the theory of probability

(Jeff_L) #1
20 II. InfiniteProbabilityFields

The investigation offields of
probability oftheabovetype

issufficientforallclassicalproblems
in


the
theoryof

probability

6

.

Inparticular,
aprobabilityfunctioninR

n

canbe definedthus:

Wetakeanynon-negativepointfunction
f(xu

x
2 ,

. ..
,


x
n
)

definedinR

n

,

suchthat

+00 +00 +90

j

j

...j

f(x

lt

x

2

,...,x

n

)dx

1

dx

2

...dx

n

=\

—00 —00

andset

P

(

A

)

=
//•••

ff(

x

i>

x

2>

••

.,x

n

)dx

1

dx

2

...dx

n

.
(5)

A

f(x
u


x
2 ,

...
,


x
n)

is,inthiscase,theprobabilitydensityatthe

point (x
u

x
2 ,

...
,

x
n
)

(cf.Chap.Ill,
§2).

AnothertypeofprobabilityfunctioninR

n

isobtainedinthe

followingmanner: Let
{£.}


be
a

sequence
of

points
ofR

n

,

and

let
{pi}


be asequence ofnon-negative realnumbers, suchthat

£pi

=
1 ;wethenset,aswedidinExampleI,

P(A)

=Z'Vi,

wherethesummation

2'
extendsoverall indicesiforwhich

£

belongstoA.Thetwo
typesof


probabilityfunctionsinR

n

men-

tionedheredonotexhaustallpossibilities,butare

usuallycon-

sideredsufficient for applications of the theoryof probability.

Nevertheless, wecan imagineproblems ofinterest forapplica-

tionsoutsideofthisclassicalregioninwhichelementaryevents

aredefinedbymeansofan infinitenumberofcoordinates. The

correspondingfieldsof probability weshallstudymore closely

afterintroducingseveralconceptsneededforthispurpose. (Cf.

Chap.Ill,
§3).

6

Cf.,forexample,R.v.Mises
[1],pp.

13-19.
Heretheexistenceof

proba-

bilities for "all practically possible"sets ofan n-dimensional space

is

required.
Free download pdf