ChapterIII
RANDOM VARIABLES
§
- Probability
Functions
GivenamappingofthesetEintoasetE'consistingofany-
typeofelements,i.e.,asingle-valuedfunctionu(£) definedonE,
whose valuesbelongtoE'.Toeach subsetA'ofE'weshallput
intocorrespondence,asitspre-imageinE,thesetu-
x
(A') ofall
elementsof Ewhich maponto elementsofA'. Let
%
(u)
bethe
system ofallsubsetsA' ofE', whose pre-imagesbelongtothe
fieldg.
%
(u)
willthenalsobeafield.If
5
happenstobea
Borel
field,
thesame
will
betrueof
5
(m)
- We
now
set
poo(A') =
P
K
1
^')}. (1)
Sincethisset-functionP
(m)
,
definedon
5
(M
\
satisfieswithrespect
tothefield
5
(m)
allofourAxioms I
- VI, itrepresentsaproba-
bilityfunctionon
%
(u)
.Beforeturningtotheproofofallthefacts
juststated,
we
shall
formulate
the
followingdefinition.
Definition.
Givenasingle-valuedfunctionu(£)ofa
random
event£.ThefunctionP
(M
>(A'),definedby
(1),
isthencalledthe
probabilityfunctionofu.
Remark 1 : Instudyingfieldsofprobability
(5,
P),wecallthe
function P(A) simplytheprobabilityfunction, but P^(A') is
calledtheprobabilityfunctionofu.Inthecaseu($)
=
£,
P
(m)
(A')
coincideswith P(A).
Remark2: Theevent
vr
x
(A') consistsofthefactthatu(£)
belongs
to
A'.
Therefore,P
(m)
(A') isthe
probability
ofu(£)c
A'.
Westillhavetoprovetheabove-mentionedpropertiesof
%
(u)
andP
(M
>.
Theyfollow,however,fromasinglefact,namely:
Lemma. Thesum, product,anddifference
of
anypre-image
setsw
-1
(A')arethepre-images
of
thecorrespondingsums,prod-
ucts,
anddifferences
of
theoriginalsetsA'.
The
proofofthislemmaisleftforthereader.
21