Foundations of the theory of probability

(Jeff_L) #1
ChapterIII

RANDOM VARIABLES

§


  1. Probability


Functions

GivenamappingofthesetEintoasetE'consistingofany-

typeofelements,i.e.,asingle-valuedfunctionu(£) definedonE,


whose valuesbelongtoE'.Toeach subsetA'ofE'weshallput


intocorrespondence,asitspre-imageinE,thesetu-


x

(A') ofall

elementsof Ewhich maponto elementsofA'. Let
%


(u)

bethe

system ofallsubsetsA' ofE', whose pre-imagesbelongtothe


fieldg.
%


(u)

willthenalsobeafield.If
5

happenstobea

Borel

field,
thesame


will
betrueof
5

(m)


  • We


now
set

poo(A') =
P

K

1

^')}. (1)

Sincethisset-functionP


(m)

,

definedon

5

(M

\

satisfieswithrespect

tothefield
5


(m)

allofourAxioms I


  • VI, itrepresentsaproba-


bilityfunctionon
%


(u)

.Beforeturningtotheproofofallthefacts

juststated,


we
shall

formulate
the

followingdefinition.

Definition.
Givenasingle-valuedfunctionu(£)ofa

random

event£.ThefunctionP


(M

>(A'),definedby
(1),

isthencalledthe

probabilityfunctionofu.


Remark 1 : Instudyingfieldsofprobability
(5,

P),wecallthe

function P(A) simplytheprobabilityfunction, but P^(A') is

calledtheprobabilityfunctionofu.Inthecaseu($)


=

£,

P

(m)

(A')

coincideswith P(A).


Remark2: Theevent
vr

x

(A') consistsofthefactthatu(£)

belongs
to


A'.
Therefore,P

(m)

(A') isthe

probability
ofu(£)c

A'.

Westillhavetoprovetheabove-mentionedpropertiesof

%

(u)

andP

(M

>.
Theyfollow,however,fromasinglefact,namely:

Lemma. Thesum, product,anddifference
of

anypre-image

setsw

-1

(A')arethepre-images
of

thecorrespondingsums,prod-

ucts,
anddifferences
of

theoriginalsetsA'.

The
proofofthislemmaisleftforthereader.

21
Free download pdf