ChapterIIIRANDOM VARIABLES§- Probability
FunctionsGivenamappingofthesetEintoasetE'consistingofany-typeofelements,i.e.,asingle-valuedfunctionu(£) definedonE,
whose valuesbelongtoE'.Toeach subsetA'ofE'weshallput
intocorrespondence,asitspre-imageinE,thesetu-
x(A') ofallelementsof Ewhich maponto elementsofA'. Let
%
(u)bethesystem ofallsubsetsA' ofE', whose pre-imagesbelongtothe
fieldg.
%
(u)willthenalsobeafield.If
5happenstobeaBorelfield,
thesame
will
betrueof
5(m)- We
now
setpoo(A') =
PK
1^')}. (1)Sincethisset-functionP
(m),definedon5(M\satisfieswithrespecttothefield
5
(m)allofourAxioms I- VI, itrepresentsaproba-
bilityfunctionon
%
(u).Beforeturningtotheproofofallthefactsjuststated,
we
shallformulate
thefollowingdefinition.Definition.
Givenasingle-valuedfunctionu(£)ofarandomevent£.ThefunctionP
(M>(A'),definedby
(1),isthencalledtheprobabilityfunctionofu.
Remark 1 : Instudyingfieldsofprobability
(5,P),wecallthefunction P(A) simplytheprobabilityfunction, but P^(A') iscalledtheprobabilityfunctionofu.Inthecaseu($)
=£,P(m)(A')coincideswith P(A).
Remark2: Theevent
vrx(A') consistsofthefactthatu(£)belongs
to
A'.
Therefore,P(m)(A') istheprobability
ofu(£)cA'.Westillhavetoprovetheabove-mentionedpropertiesof%(u)andP(M>.
Theyfollow,however,fromasinglefact,namely:Lemma. Thesum, product,anddifference
ofanypre-imagesetsw-1(A')arethepre-images
ofthecorrespondingsums,prod-ucts,
anddifferences
oftheoriginalsetsA'.The
proofofthislemmaisleftforthereader.21