§
3.ExamplesofInfiniteFieldsofProbability 19
P(A) on
3
which satisfies
thecondition P(E)
=
- As is well
known
3
,suchafunctionis
uniquelydeterminedbyits values
P[-oo;x)
=F(x) (1)
forthespecialintervals
[-<*>;
x).The
functionF(x) iscalledthe
distributionfunction
of
£. Furtheron
(Chap.Ill,
§2)
weshall
shownthatF(x) is non-decreasing,continuous
ontheleft,and
hasthefollowinglimitingvalues
:
limF(x)
=i^-oc)=
6,
limF(x)=F(
+
oo)=
1
.
(2)
*—
—
oo a;
->-»-oo
Conversely,if agiven functionF(x) satisfiesthese
conditions,
thenitalwaysdeterminesanon-negativecompletelyadditiveset-
functionP(A) forwhichP(E)
=
l
4
.
IV. LetusnowconsiderthebasicsetE asann-dimensional
Euclidianspace R
n
,
i.e.,thesetofallorderedn-tuples
£
=
{x
u
x
2
,
...,x
nj
ofrealnumbers.Let
$
consist,inthiscase,ofall
Borel
point-sets
5
ofthe spaceR
n
. Onthebasisofreasoninganalogous
tothatusedinExampleII,weneednotinvestigatenarrowersys-
temsofsets,forexamplethesystemsofn-dimensionalintervals.
Theroleofprobabilityfunction P(A) will be playedhere,
as always, by any non-negative and completely
additive set-
functiondefinedon
$
and
satisfyingtheconditionP(E)
=1.
Such
aset-functionisdetermineduniquelyifweassignitsvalues
P{L
aiai...an)
=F{a
lt
a
2
,...,a
n)
(3)
forthe special setsL
aia%
„,
an
,
where L
aia,...an
represents the
aggregateofall
£
forwhich
Xi<Oi
(i
=
1,2,
...
,
n).
ForourfunctionF(a
lf
a
2
,
..
.
,a
n)
wemaychooseanyfunction
whichforeachvariableisnon-decreasing
andcontinuousonthe
left,andwhichsatisfies
the
followingconditions
:
lim F(a
v
a
2>
...,«„)
=
F(a
v
.
.
.,«i_i,
—oo,a
i+1
,...,#„)
=0,
"—~
t=
4,2i
....,»
f
lim F(a
v
a
2
,..
.,a
n
)
=F(+oo,+00,...,-foo)
=
1.
Oi
->
+00,Oj
->
+00,...,o»
—
-t-00
F(a
u
a
2 ,
..
.
,a
n)
iscalledthedistributionfunctionofthevari-
ables
a?i,x
2 ,
..
.
,x
n
.
3
Cf
.,
forexample,Lebesgue, LegonssurVintegration, 1928,
p.
152-156.
*
Seethepreviousnote.
8
ForadefinitionofBorelsetsinR
n
seeHausdorff,
Mengenlehre,1927,
pp.177-181.