§3.ExamplesofInfiniteFieldsofProbability 19P(A) on
3which satisfiesthecondition P(E)=- As is well
known3,suchafunctionisuniquelydeterminedbyits valuesP[-oo;x)
=F(x) (1)forthespecialintervals
[-<*>;
x).ThefunctionF(x) iscalledthedistributionfunction
of£. Furtheron(Chap.Ill,
§2)weshallshownthatF(x) is non-decreasing,continuousontheleft,andhasthefollowinglimitingvalues:limF(x)=i^-oc)=
6,limF(x)=F(
+oo)=
1.
(2)*——
oo a;->-»-ooConversely,if agiven functionF(x) satisfiestheseconditions,thenitalwaysdeterminesanon-negativecompletelyadditiveset-
functionP(A) forwhichP(E)=
l4.IV. LetusnowconsiderthebasicsetE asann-dimensionalEuclidianspace Rn,i.e.,thesetofallorderedn-tuples
£=
{xux
2
,...,x
njofrealnumbers.Let
$consist,inthiscase,ofallBorelpoint-sets5ofthe spaceRn. Onthebasisofreasoninganalogous
tothatusedinExampleII,weneednotinvestigatenarrowersys-temsofsets,forexamplethesystemsofn-dimensionalintervals.Theroleofprobabilityfunction P(A) will be playedhere,as always, by any non-negative and completely
additive set-functiondefinedon
$and
satisfyingtheconditionP(E)=1.
Suchaset-functionisdetermineduniquelyifweassignitsvaluesP{Laiai...an)=F{a
lta2,...,a
n)(3)forthe special setsLaia%„,
an,where Laia,...anrepresents theaggregateofall
£forwhich
Xi<Oi(i=1,2,...
,n).ForourfunctionF(a
lfa
2
,...,a
n)wemaychooseanyfunctionwhichforeachvariableisnon-decreasing
andcontinuousontheleft,andwhichsatisfies
thefollowingconditions:lim F(ava2>...,«„)=
F(av.
.
.,«i_i,—oo,ai+1,...,#„)=0,"—~t=
4,2i....,»flim F(ava2,...,an)=F(+oo,+00,...,-foo)=
1.Oi->
+00,Oj->
+00,...,o»—-t-00F(a
ua
2 ,..
.,a
n)iscalledthedistributionfunctionofthevari-ables
a?i,x
2 ,..
.,x
n.3Cf
.,forexample,Lebesgue, LegonssurVintegration, 1928,
p.152-156.*Seethepreviousnote.8ForadefinitionofBorelsetsinRnseeHausdorff,
Mengenlehre,1927,pp.177-181.