Foundations of the theory of probability

(Jeff_L) #1
§


  1. DefinitionofRandomVariablesandofDistributionFunctions 23


Since

g

(
*>

isafield,

thenalongwiththeintervals (-oo,«a) it

containsallpossible

finitesumsofhalf-openintervals [a,-b).If

ourfieldofprobabilityisa


Borelfield,then
$

and

5

U)

areBorel

fields
;therefore,in


this
case
%

(x)

containsallBorelsets
ofR

1

,

Theprobabilityfunctionofa

randomvariable
we

shalldenote

inthefuturebyP<*>(A').Itisdefinedfor


all
setsofthe

field

ft<*>.

In particular, for the most important case, the


Borel
field of

probability, P


(x)

isdefinedforallBorel setsofR

1

.

Definition.Thefunction

F<*Ha)

=P<*>

(-*>',
a)

=p
{x<a},

where



  • ooand


4-
ooareallowablevaluesofa,iscalledthedistri-

bution
functionof


therandomvariablex.

Fromthe

definition
it

follows
at

once that

FW(-oo) =0,FW(
+

oo) =
1

.
(1)

Theprobabilityofthe realizationofboth inequalitiesa^x<b,


isobviouslygivenbytheformula


?{x

c
[a;

b)}=F&{b)


  • F&(a) (2)


Fromthis,wehave,fora
<


b,

FW(a)§FW(5)

which
meansthatF


(x)

(a) isanon-decreasingfunction.Nowlet

fli<a
2


<...<a
n

< ...<b
;

then

^{xa[a

n

;b)}=

n

Therefore, inaccordancewith thecontinuityaxiom,


FV(b)-F(*)(a

n)

=
P{xcz[a

n>

b)}

approacheszeroas«->






oo.

FromthisitisclearthatF

(x)

(a) is

continuousonthe
left.


Inananalogous
waywecan

prove
theformulae:

limFW
(a)

=
FW(.-oo)

=

0, a

-+





oo
, (3)

limFW
(a)

=


(

+

oo

)

=
1, a


  • +oo-
    (4)


Ifthefieldofprobability

(5,

P) isaBorelfield,thevaluesof

theprobabilityfunctionP<*>(A)
for all BorelsetsA of i^


1

are

uniquelydetermined
byknowledgeofthe distributionfunction
Free download pdf