§
- DefinitionofRandomVariablesandofDistributionFunctions 23
Since
g
(
*>
isafield,
thenalongwiththeintervals (-oo,«a) it
containsallpossible
finitesumsofhalf-openintervals [a,-b).If
ourfieldofprobabilityisa
Borelfield,then
$
and
5
U)
areBorel
fields
;therefore,in
this
case
%
(x)
containsallBorelsets
ofR
1
,
Theprobabilityfunctionofa
randomvariable
we
shalldenote
inthefuturebyP<*>(A').Itisdefinedfor
all
setsofthe
field
ft<*>.
In particular, for the most important case, the
Borel
field of
probability, P
(x)
isdefinedforallBorel setsofR
1
.
Definition.Thefunction
F<*Ha)
=P<*>
(-*>',
a)
=p
{x<a},
where
- ooand
4-
ooareallowablevaluesofa,iscalledthedistri-
bution
functionof
therandomvariablex.
Fromthe
definition
it
follows
at
once that
FW(-oo) =0,FW(
+
oo) =
1
.
(1)
Theprobabilityofthe realizationofboth inequalitiesa^x<b,
isobviouslygivenbytheformula
?{x
c
[a;
b)}=F&{b)
- F&(a) (2)
Fromthis,wehave,fora
<
b,
FW(a)§FW(5)
which
meansthatF
(x)
(a) isanon-decreasingfunction.Nowlet
fli<a
2
<...<a
n
< ...<b
;
then
^{xa[a
n
;b)}=
n
Therefore, inaccordancewith thecontinuityaxiom,
FV(b)-F(*)(a
n)
=
P{xcz[a
n>
b)}
approacheszeroas«->
oo.
FromthisitisclearthatF
(x)
(a) is
continuousonthe
left.
Inananalogous
waywecan
prove
theformulae:
limFW
(a)
=
FW(.-oo)
=
0, a
-+
oo
, (3)
limFW
(a)
=
F«
(
+
oo
)
=
1, a
- +oo-
(4)
Ifthefieldofprobability
(5,
P) isaBorelfield,thevaluesof
theprobabilityfunctionP<*>(A)
for all BorelsetsA of i^
1
are
uniquelydetermined
byknowledgeofthe distributionfunction