Foundations of the theory of probability

(Jeff_L) #1

22 III.RandomVariables


LetA'andB'betwosetsof

$

(M

>.Theirpre-imagesAandB

belongthento
J.


Since
%

isafield,thesetsAB,A
+

B,
andA


  • B


alsobelong
to
g


;butthesesetsarethepre-imagesofthesetsA'B\

A'






B\and
A'

-B',
whichthusbelongto

^

u

\Thisprovesthat

5


(u)

isa field.Inthesamemanneritcanbeshownthatif
g

isa

Borelfield,sois
%


(u

\

Furthermore,itisclearthat

PM(E') = P^-

1

^)}

= P(#) =1.

ThatP


U)

isalwaysnon-negative,isself-evident. Itremainsonly

tobeshown,therefore,


that
P

(m)

is

completely
additive (cf.

the

endof
§


1, Chap. II).

LetusassumethatthesetsA'
n,

andthereforetheirpre-images

u-


1

(A\)

}

a,Yedisjoint.Itfollowsthat

n n
n

n n

whichprovesthecomplete additivityof P


u)

.

Inconclusionletus alsonotethefollowing. Letu
x(g)

be a

functionmappingEonE',and
u
2 (t)


beanotherfunction,map-

ping


£"

onE".Theproductfunctionu
2

uA£) mapsEonE".

We

shallnowstudytheprobabilityfunctionsP


(Ml)

(A') andP

(u

HA")

forthefunctions u
rU)


andu(()

=

UzUiU).

It iseasy toshow

thatthesetwoprobabilityfunctionsareconnectedbythefollow-


ingrelation:


?^(A

,f

)^?^){u^(A

ff

)}.

(2)

§


  1. DefinitionofRandomVariablesandof


DistributionFunctions

Definition.Arealsingle-valuedfunction
*(£),

definedonthe

basicsetE,iscalledarandomvariable ifforeachchoiceofareal


numberatheset{x
<

a}ofall
|

forwhichtheinequalityx<a

holdstrue,belongstothesystemofsets
$•


Thisfunctionx(£) mapsthebasicsetEintothesetR

1

ofall

realnumbers.Thisfunctiondetermines,
as

in
§1,a

field

%

(x)

of

subsetsofthe
setR

1

.We

mayformulateourdefinitionofrandom

variable
inthismanner:Arealfunctionx
(£)

isa

randomvariable

ifandonlyif

g

U)

containseveryintervalofthe

form (-ooj
a)

.
Free download pdf