22 III.RandomVariables
LetA'andB'betwosetsof$(M>.Theirpre-imagesAandBbelongthento
J.
Since
%isafield,thesetsAB,A
+B,
andA- B
alsobelong
to
g
;butthesesetsarethepre-imagesofthesetsA'B\A'
B\and
A'-B',
whichthusbelongto^u\Thisprovesthat5
(u)isa field.Inthesamemanneritcanbeshownthatif
gisaBorelfield,sois
%
(u\Furthermore,itisclearthatPM(E') = P^-1^)}= P(#) =1.ThatP
U)isalwaysnon-negative,isself-evident. Itremainsonlytobeshown,therefore,
that
P(m)iscompletely
additive (cf.theendof
§
1, Chap. II).LetusassumethatthesetsA'
n,andthereforetheirpre-imagesu-
1(A\)}a,Yedisjoint.Itfollowsthatn n
nn nwhichprovesthecomplete additivityof P
u).Inconclusionletus alsonotethefollowing. Letu
x(g)be afunctionmappingEonE',and
u
2 (t)
beanotherfunction,map-ping
£"onE".Theproductfunctionu
2uA£) mapsEonE".WeshallnowstudytheprobabilityfunctionsP
(Ml)(A') andP(uHA")forthefunctions u
rU)
andu(()=UzUiU).It iseasy toshowthatthesetwoprobabilityfunctionsareconnectedbythefollow-
ingrelation:
?^(A,f)^?^){u^(Aff)}.(2)§- DefinitionofRandomVariablesandof
DistributionFunctionsDefinition.Arealsingle-valuedfunction
*(£),definedonthebasicsetE,iscalledarandomvariable ifforeachchoiceofareal
numberatheset{x
<a}ofall
|forwhichtheinequalityx<aholdstrue,belongstothesystemofsets
$•
Thisfunctionx(£) mapsthebasicsetEintothesetR1ofallrealnumbers.Thisfunctiondetermines,
asin
§1,afield%(x)ofsubsetsofthe
setR1.Wemayformulateourdefinitionofrandomvariable
inthismanner:Arealfunctionx
(£)isarandomvariableifandonlyifgU)containseveryintervaloftheform (-ooj
a).