22 III.RandomVariables
LetA'andB'betwosetsof
$
(M
>.Theirpre-imagesAandB
belongthento
J.
Since
%
isafield,thesetsAB,A
+
B,
andA
- B
alsobelong
to
g
;butthesesetsarethepre-imagesofthesetsA'B\
A'
B\and
A'
-B',
whichthusbelongto
^
u
\Thisprovesthat
5
(u)
isa field.Inthesamemanneritcanbeshownthatif
g
isa
Borelfield,sois
%
(u
\
Furthermore,itisclearthat
PM(E') = P^-
1
^)}
= P(#) =1.
ThatP
U)
isalwaysnon-negative,isself-evident. Itremainsonly
tobeshown,therefore,
that
P
(m)
is
completely
additive (cf.
the
endof
§
1, Chap. II).
LetusassumethatthesetsA'
n,
andthereforetheirpre-images
u-
1
(A\)
}
a,Yedisjoint.Itfollowsthat
n n
n
n n
whichprovesthecomplete additivityof P
u)
.
Inconclusionletus alsonotethefollowing. Letu
x(g)
be a
functionmappingEonE',and
u
2 (t)
beanotherfunction,map-
ping
£"
onE".Theproductfunctionu
2
uA£) mapsEonE".
We
shallnowstudytheprobabilityfunctionsP
(Ml)
(A') andP
(u
HA")
forthefunctions u
rU)
andu(()
=
UzUiU).
It iseasy toshow
thatthesetwoprobabilityfunctionsareconnectedbythefollow-
ingrelation:
?^(A
,f
)^?^){u^(A
ff
)}.
(2)
§
- DefinitionofRandomVariablesandof
DistributionFunctions
Definition.Arealsingle-valuedfunction
*(£),
definedonthe
basicsetE,iscalledarandomvariable ifforeachchoiceofareal
numberatheset{x
<
a}ofall
|
forwhichtheinequalityx<a
holdstrue,belongstothesystemofsets
$•
Thisfunctionx(£) mapsthebasicsetEintothesetR
1
ofall
realnumbers.Thisfunctiondetermines,
as
in
§1,a
field
%
(x)
of
subsetsofthe
setR
1
.We
mayformulateourdefinitionofrandom
variable
inthismanner:Arealfunctionx
(£)
isa
randomvariable
ifandonlyif
g
U)
containseveryintervalofthe
form (-ooj
a)
.