§3.
Multi-dimensionalDistributionFunctions 25
subsets of spaceR
n
anda probability
function
pfe»»*»•••»•*>
(4')
definedon
gf'.
Thisprobability
function
is
calledthen-dimensional
probabilityfunction
of
therandomvatiablesx
lt
x
2 ,
...
,
x
n
.
Asfollowsdirectlyfromthedefinitionofarandom
variable,
thefield
g'
contains,foreachchoiceofianda
t
(i
=
1,2,
...
,
n)
f
theset
ofallpointsinR
n
forwhichx
{
<
a
{
.Therefore
g'
alsocon-
tainsthe intersection of theabove sets, i.e.the set
L
ai0t
_
aH
of all points of R
n
for
which all the inequalities x
{
<
a
t
hold
(i
=
l,2,...,n)\
Ifwenowdenoteasthen-dimensional
half-openinterval
[tti,a
2 ,
..
.
,a
n
',
Oi,b
2 ,
..
.
,o
n)
;
the setofallpointsinR
n
,
forwhicha
i^^i
<b
i,
thenweseeat
oncethateachsuchintervalbelongstothefield
gf'
since
[a
v
a
t
,
...,a
n;
b
v
b
2
,
..
.,
b
n)
==
^b\bt...b
n
*^o,\b
t
...b
n
^b\a
t
bi...bn
*
*
^b
x
b%...bn-idn
'
TheBorelextensionof
thesystem
of
alln-dimensionalhalf-
openintervalsconsistsofall
Borel
sets
in
R
n
.
Fromthisitfollows
thatinthecase
of
aBorelfield
of
probability
'
7
thefield
5
contains
alltheBorelsetsinthespaceR
n
.
THEOREM:Inthecase
of
aBorel
fieldof
probabilityeachBorel
function
x
=
f(x
lt
x
2
,.
..
,
x
n) of
a
finite
number
of
randomvari-
ables
x
u
x
2 ,
...
,
x
n
isalsoarandomvariable.
Allweneedtoprove thisistopoint out
that
the
set
of
all
points(x
lt
x
2 ,
...
,
x
n)
inR
n
for
which
x
=
f(xu%2,
..
.
,x
n)
<a,
isaBorelset.Inparticular,allfinitesumsandproductsofrandom
variablesarealsorandomvariables.
Definition: Thefunction
is calledthew-dimensionaldistributionfunctionof therandom
variablesx
lf
x
2f
...
,
x
n
.
Asinthe
one-dimensionalcase,
weprovethatthe
n-dimensional
distributionfunction
F
(Xl
'
x Xn)
(a
u
a
2f
...,a
n
)is
non-decreas-
ingandcontinuous ontheleft ineach variable.In analogyto
equations (3) and
(4)
in
§
2,weherehave
1
The
a
f
mayalso assumetheinfinitevalues±
<*>