Foundations of the theory of probability

(Jeff_L) #1
§3.

Multi-dimensionalDistributionFunctions 25

subsets of spaceR

n

anda probability

function

pfe»»*»•••»•*>

(4')

definedon
gf'.

Thisprobability

function
is

calledthen-dimensional

probabilityfunction
of


therandomvatiablesx
lt

x
2 ,

...
,

x
n

.

Asfollowsdirectlyfromthedefinitionofarandom

variable,

thefield


g'
contains,foreachchoiceofianda
t

(i

=

1,2,

...
,

n)

f

theset


ofallpointsinR

n

forwhichx

{

<

a
{

.Therefore

g'
alsocon-

tainsthe intersection of theabove sets, i.e.the set
L

ai0t

_
aH

of all points of R

n

for

which all the inequalities x

{

<

a

t

hold

(i

=
l,2,...,n)\

Ifwenowdenoteasthen-dimensional

half-openinterval

[tti,a
2 ,

..
.

,a
n

',
Oi,b
2 ,

..
.

,o
n)
;

the setofallpointsinR


n

,

forwhicha
i^^i

<b
i,

thenweseeat

oncethateachsuchintervalbelongstothefield
gf'

since

[a

v

a

t

,

...,a

n;

b

v

b

2

,

..
.,

b

n)

==

^b\bt...b
n

*^o,\b
t

...b
n

^b\a
t

bi...bn

*
*
^b
x

b%...bn-idn

'

TheBorelextensionof

thesystem
of

alln-dimensionalhalf-

openintervalsconsistsofall

Borel
sets

in
R

n

.

Fromthisitfollows

thatinthecase
of

aBorelfield
of

probability

'

7

thefield
5

contains

alltheBorelsetsinthespaceR

n

.

THEOREM:Inthecase
of

aBorel
fieldof

probabilityeachBorel

function

x

=

f(x
lt

x

2

,.

..
,

x
n) of

a
finite

number
of

randomvari-

ables
x
u

x
2 ,

...
,

x

n

isalsoarandomvariable.

Allweneedtoprove thisistopoint out

that
the

set
of

all

points(x
lt

x
2 ,

...
,

x
n)

inR

n

for

which
x

=

f(xu%2,

..
.

,x
n)

<a,

isaBorelset.Inparticular,allfinitesumsandproductsofrandom

variablesarealsorandomvariables.

Definition: Thefunction

is calledthew-dimensionaldistributionfunctionof therandom

variablesx

lf

x

2f

...
,

x
n

.

Asinthe

one-dimensionalcase,
weprovethatthe

n-dimensional

distributionfunction

F

(Xl
'

x Xn)

(a
u

a
2f

...,a
n

)is

non-decreas-

ingandcontinuous ontheleft ineach variable.In analogyto

equations (3) and
(4)

in
§

2,weherehave

1

The

a

f

mayalso assumetheinfinitevalues±

<*>
Free download pdf