§3.Multi-dimensionalDistributionFunctions 25subsets of spaceRnanda probabilityfunctionpfe»»*»•••»•*>(4')definedon
gf'.Thisprobabilityfunction
iscalledthen-dimensionalprobabilityfunction
of
therandomvatiablesx
ltx
2 ,...
,x
n.Asfollowsdirectlyfromthedefinitionofarandomvariable,thefield
g'
contains,foreachchoiceofianda
t(i=1,2,...
,n)ftheset
ofallpointsinRnforwhichx{<a
{.Thereforeg'
alsocon-tainsthe intersection of theabove sets, i.e.the set
Lai0t_
aHof all points of Rnforwhich all the inequalities x{<athold(i=
l,2,...,n)\Ifwenowdenoteasthen-dimensionalhalf-openinterval[tti,a
2 ,..
.,a
n',
Oi,b
2 ,..
.,o
n)
;the setofallpointsinR
n,forwhicha
i^^i<b
i,thenweseeatoncethateachsuchintervalbelongstothefield
gf'since[avat,...,an;bvb2,..
.,bn)==^b\bt...b
n*^o,\b
t...b
n^b\a
tbi...bn*
*
^b
xb%...bn-idn'TheBorelextensionofthesystem
ofalln-dimensionalhalf-openintervalsconsistsofallBorel
setsin
Rn.Fromthisitfollowsthatinthecase
ofaBorelfield
ofprobability'7thefield
5containsalltheBorelsetsinthespaceRn.THEOREM:Inthecase
ofaBorel
fieldofprobabilityeachBorelfunctionx=f(x
ltx2,...
,x
n) ofa
finitenumber
ofrandomvari-ables
x
ux
2 ,...
,xnisalsoarandomvariable.Allweneedtoprove thisistopoint outthat
theset
ofallpoints(x
ltx
2 ,...
,x
n)inRnforwhich
x=f(xu%2,..
.,x
n)<a,isaBorelset.Inparticular,allfinitesumsandproductsofrandomvariablesarealsorandomvariables.Definition: Thefunctionis calledthew-dimensionaldistributionfunctionof therandomvariablesxlfx2f...
,x
n.Asintheone-dimensionalcase,
weprovethatthen-dimensionaldistributionfunctionF(Xl
'x Xn)(a
ua
2f...,a
n)isnon-decreas-ingandcontinuous ontheleft ineach variable.In analogytoequations (3) and
(4)in
§2,weherehave1Theafmayalso assumetheinfinitevalues±<*>