Foundations of the theory of probability

(Jeff_L) #1
§


  1. ProbabilitiesinInfinite-dimensionalSpaces 27


p<*.,*a
,...,**>(,4)=pttk.*.....-^^-!^)}.

(ii)

For
thecorresponding

distributionfunctions,weobtainfrom

(10) and(11) the

equations

:

/#*.•*«.•

—"Ufo,

a

ia

,

..
.,

a

in

)

=
F<*»**<••->^(a

1

,a

2

a
n)

,

(12)

pin,**....,**)

(a

lf

a
2t

...,a

k

)

=F

x
»•«••••*«>

(a

x

,...,a

ft

,+oo,...,+oo).(13)

§


  1. ProbabilitiesinInfinite-dimensional


Spaces

In
§

3 ofthesecondchapterwehaveseenhowtoconstruct

variousfieldsofprobabilitycommoninthetheoryofprobability.

Wecan imagine, however, interesting problems in whichthe

elementaryevents are definedbymeans ofan infinite number

ofcoordinates.Let
ustakeasetMofindices/*

(indexing
set) of

arbitrary
cardinality
m

. Thetotalityofallsystems


ofrealnumbersx

M

,

where/xrunsthroughtheentiresetM,

we

shallcallthespaceR


M

(inordertodefineanelement
£

inspace

R


M

,

wemustputeachelement/xinsetMincorrespondencewith

a realnumber
%


or, equivalently, assign a real single-valued

function
x^


oftheelement
/*,definedonM)

3

.

Ifthe
setM

consists

of
the


first
nnaturalnumbers1,2,..
.

,n,thenR

M

isthe

ordinary

7i-dimensionalspaceR


n

.IfwechooseforthesetMallrealnum-

bersR


1

,

thenthecorrespondingspace R

M

=
R

R1

will consist of

allrealfunctions


((/*)

=x

tt

oftherealvariable
/*.


WenowtakethesetR

M

(withan arbitrary setM) as

the

basicsetE.Let I


={x^}
beanelementinE;weshalldenoteby

ft*
a...

>»:(£)

^ne Point {x

/tl

,x

iH9

..-.

t

x

fh

)' of the n-dimensional

spaceR


n

.AsubsetAofEweshall callacylinderset ifitcan

be representedintheform


whereA'isasubsetof#


w

.Theclassofallcylindersetscoincides,

therefore,withtheclassofallsetswhichcanbedefinedbyrela-


tionsoftheform


3

Cf.Hausdorff,Mengenlehre,
1927,p.

23.
Free download pdf