28 III. RandomVariables/(**.**.-••»**,)=-<).
(1)Inordertodetermine
anarbitrary
cylinderset P
Ml
^...
^(A')
bysucharelation,weneedonlytakeas
/afunctionwhichequalsonA',butoutsideofA'equalsunity.AcylindersetisaBorelcylindersetifthecorrespondingsetAfisaBorelset.AllBorelcylindersets
ofthespaceRMformafield,whichweshallhenceforthdenote
bygM4.TheBorel
extensionofthefield%Mweshalldenote,asalways,byB%M.SetsinB%MweshallcallBorelsets
ofthespaceRM.Lateronweshallgiveamethodofconstructingandoperatingwithprobabilityfunctionson%M,andconsequently,bymeansoftheExtensionTheorem,onB%Malso.Weobtaininthismannerfieldsofprobabilitysufficientforallpurposesinthecasethattheset M is denumerable. We can thereforehandle all
questionstouchinguponadenumerablesequenceofrandomvariables.ButifMisnotdenumerable,manysimpleandinterestingsubsetsofRMremainoutsideofB%M.Forexample,thesetofallelements
£for which *Mremains smaller than a fixed constant for allindices
/*,does not belong tothe system B%Mif the set M isnon-denumerable.Itisthereforedesirabletotrywheneverpossibletoputeachprobleminsuchaformthatthespaceofallelementaryevents£hasonlyadenumerablesetof coordinates.Letaprobabilityfunction P(A) be definedon%M. Wemay
then regard every coordinate %Mof the elementary event
£as arandom variable. In consequence, every finite group(
xrii>xm»>- ••*x
fJ°f thesecoordinates has an ^-dimensionalprobabilityfunction P^....^^) andacorrespondingdistribu-4FromtheaboveitfollowsthatBorelcylindersetsareBorelsetsdefinablebyrelationsoftype
( 1).NowletAandBbetwoBorelcylindersetsdefinedbytherelations/(*/*i.*t*t *#«J=
0» Sfai.*lXU)=Thenwe
candefinethesetsA+B,AB,andA-Brespectivelybytherelationsf-g=0,f*+g2=
0,wherea>(x)= for x4= andw(0)= 1 If
/and
gareBorelfunctions,soalsoaref-g,f+g2andf+ <o{g)
;therefore,A+B,ABandA-BareBorelcylindersets.Thuswehaveshownthatthesystemofsets $3fisafield.