28 III. RandomVariables
/(**.**.-••»**,)=-<).
(1)
Inordertodetermine
an
arbitrary
cylinderset P
Ml
^
...
^
(A')
by
sucharelation,weneedonlytakeas
/
afunctionwhichequals
onA',butoutsideofA'equalsunity.
AcylindersetisaBorelcylindersetifthecorrespondingset
A
f
isaBorelset.AllBorelcylindersets
of
thespaceR
M
forma
field,
whichweshallhenceforthdenote
by
g
M4
.
TheBorel
extensionofthefield
%
M
weshalldenote,asalways,
byB%
M
.SetsinB%
M
weshallcallBorelsets
of
thespaceR
M
.
Lateronweshallgiveamethodofconstructingandoperating
withprobabilityfunctionson
%
M
,
andconsequently,bymeansof
theExtensionTheorem,onB%
M
also.Weobtaininthismanner
fieldsofprobabilitysufficientforallpurposesinthecasethatthe
set M is denumerable. We can therefore
handle all
questions
touchinguponadenumerablesequenceofrandomvariables.
But
ifMisnotdenumerable,manysimpleandinterestingsubsetsof
R
M
remainoutsideofB%
M
.Forexample,thesetofallelements
£
for which *
M
remains smaller than a fixed constant for all
indices
/*,
does not belong tothe system B%
M
if the set M is
non-denumerable.
Itisthereforedesirableto
trywheneverpossibletoputeach
probleminsuchaformthatthespaceofallelementary
events
£
hasonlyadenumerablesetof coordinates.
Letaprobabilityfunction P(A) be definedon
%
M
. Wemay
then regard every coordinate %
M
of the elementary event
£
as a
random variable. In consequence, every finite group
(
x
rii>
x
m»>
- ••*x
fJ
°f these
coordinates has an ^-dimensional
probabilityfunction P^....^^) anda
correspondingdistribu-
4
FromtheaboveitfollowsthatBorelcylindersets
areBorelsetsdefinable
byrelationsoftype
( 1
).NowletAandBbetwoBorelcylindersetsdefined
bytherelations
/(*/*i.*t*t *#«J
=
0» Sfai.*l
X
U)
=
Thenwe
can
definethesetsA+B,AB,andA-Brespectivelybytherelations
f-g
=0,
f*+g
2
=
0,
where
a>(x)= for x4= and
w
(0)
= 1 If
/
and
g
areBorelfunctions,
so
also
are
f-g,f
+
g
2
and
f
+ <o{g)
;
therefore,A+B,ABandA-BareBorel
cylindersets.Thuswe
haveshownthatthesystemofsets $
3f
isafield.