§
- ProbabilitiesinInfinite-dimensionalSpaces
29
tionfunction ^^...^(fli,a
2 ,
...
,
a
w).
Itisobviousthatfor
everyBorelcylinderset
the followingequationholds:
p^=
p
w,...,.w,
where A' is aBorel setof
/?".
Inthismanner, theprobability
functionPisuniquelydeterminedonthefield
%
M
ofallcylindersets
bymeansofthevaluesofallfiniteprobabilityfunctions P^^...
^
for allBorelsets ofthecorrespondingspaces R
n
.However, for
Borelsets,thevaluesoftheprobabilityfunctions P^,...^ are
uniquelydeterminedbymeansofthecorrespondingdistribution
functions.Wehavethusprovedthefollowingtheorem
:
T.he set of all finite-dimensional
distribution
functions
F/hih
—
i
1
*
uniquelydeterminestheprobabilityfunctionP(A) for
allsetsin
$
M
.
If
P(A) isdefinedon
%
M
,
then (accordingtothe
extension theorem) it is uniquely determined onB%
M
by the
values
of
thedistribution
f
unctionsF^^...^.
Wemaynowaskthefollowing.Underwhatconditionsdoesa
systemofdistribution functions
F^^,,.^
givenapriori define
afield ofprobabilityon
%
M
(and, consequently, onB%
M
)
?
We
mustfirst
note
thateverydistributionfunction
F^/h.../**
mustsatisfytheconditions givenin
§
3,
III
ofthesecondchap-
ter;
indeedthis iscontainedinthe veryconcept
of
distribution
function.Besides,asaresultofformulas (13) and (14) in
§2,
wehavealsothefollowingrelations
:
F
fHifHt
...
Hn
{a
il
,
a
it
,
..
.,
a
in
)
=F
/<l/<2
.../ttt
K,
a
2
,
..
.,
a
n)
,
(2)
*V*...**(«i.
a
2
>
->
a
k)
=^W,...^K,
«
2
.
...,**,+<»,...,
+oo),(3)
where
k<n and
[/ /
"'
n
)
is an
arbitrary permutation.
\*1>*2» •
- •»
W
These necessary conditions prove alsoto be sufficient, as
will
appear fromthe following theorem.
FundamentalTheorem:Everysystem
of
distributionfunc-
tions
F
fll
HM
...pH
,
satisfyingtheconditions
(2)
and
(3),
definesa
probabilityfunctionP(A) on
%
M
,
whichsatisfiesAxiomsI
- VI.
ThisprobabilityfunctionP(A) canbe extended (bytheexten-
siontheorem) toB%
M
also.