30III.
RandomVariablesProof. Giventhedistributionfunctions^
1/u
t...
/.
B, satisfyingthegeneralconditionsofChap.II,
§3,IIIandalsoconditions
(2)and
(3).Everydistributionfunction&&&...p.definesuniquelyacorrespondingprobabilityfunction P^^,...^ forallBorelsetsofRn(cf.
§3).WeshalldealinthefutureonlywithBorelsetsofRnandwith BorelcylindersetsinE.ForeverycylindersetwesetPW=P*,*,...,^V).(4)SincethesamecylindersetAcanbedennedbyvarioussetsA',wemust first show that formula
(4)yields always the samevalue
forP(A).Let (x^,x^...,
XpJbe afinitesystem of randomvariablesXp.
Proceedingfromtheprobabilityfunction P^^,...^ oftheserandomvariables, wecan, inaccordancewith therulesin
§3,define the probability function P^^...^ of each subsystem(xHi,xH,...,x/H). Fromequations
(2)
and
(3)itfollowsthatthisprobabilityfunction definedaccordingto
§3 isthesameasthefunctionP^^2...Hltgiven
apriori.
WeshallnowsupposethatthecylindersetA isdefinedbymeansofA=p;l„it...Hy)and simultaneouslyby means ofwhere all random variables xMand
*belong to the system(x/*i>xht>••»*«J»whichisobviouslynotanessentialrestriction.The
conditionsand(V,V
, ...,*« )cA"areequivalent. ThereforeP^\H
%- ••
H
k
(A')=
P^«••n*
{(^»*/4,*''>XH
k)c^'}=
P^,...^{(*>VX''•"**JcAl=%^'^JA^>whichproves our statement concerningthe uniqueness of thedefinitionof P(A).