§- ProbabilitiesinInfinite-dimensionalSpaces
29
tionfunction ^^...^(fli,a
2 ,...
,a
w).ItisobviousthatforeveryBorelcylindersetthe followingequationholds:
p^=pw,...,.w,
where A' is aBorel setof
/?".
Inthismanner, theprobabilityfunctionPisuniquelydeterminedonthefield
%
Mofallcylindersetsbymeansofthevaluesofallfiniteprobabilityfunctions P^^...
^
for allBorelsets ofthecorrespondingspaces R
n.However, forBorelsets,thevaluesoftheprobabilityfunctions P^,...^ areuniquelydeterminedbymeansofthecorrespondingdistributionfunctions.Wehavethusprovedthefollowingtheorem
:T.he set of all finite-dimensionaldistribution
functionsF/hih—
i1
*uniquelydeterminestheprobabilityfunctionP(A) forallsetsin
$
M.
IfP(A) isdefinedon%M,then (accordingtotheextension theorem) it is uniquely determined onB%
Mby thevalues
of
thedistributionfunctionsF^^...^.Wemaynowaskthefollowing.Underwhatconditionsdoesasystemofdistribution functions
F^^,,.^
givenapriori defineafield ofprobabilityon
%M(and, consequently, onB%M)?Wemustfirst
notethateverydistributionfunctionF^/h.../**mustsatisfytheconditions givenin
§
3,III
ofthesecondchap-ter;
indeedthis iscontainedinthe veryconcept
of
distributionfunction.Besides,asaresultofformulas (13) and (14) in
§2,
wehavealsothefollowingrelations
:FfHifHt...Hn{ail,ait,..
.,ain)=F/<l/<2.../ttt
K,a2,..
.,an),(2)*V*...**(«i.a2>->ak)
=^W,...^K,«2....,**,+<»,...,+oo),(3)where
k<n and
[/ /
"'n)is anarbitrary permutation.\*1>*2» •- •»
W
These necessary conditions prove alsoto be sufficient, as
willappear fromthe following theorem.
FundamentalTheorem:Everysystem
ofdistributionfunc-tions
Ffll
HM...pH,satisfyingtheconditions
(2)and
(3),definesaprobabilityfunctionP(A) on
%
M,whichsatisfiesAxiomsI- VI.
ThisprobabilityfunctionP(A) canbe extended (bytheexten-siontheorem) toB%
Malso.