32
III.RandomVariables
occur,i.e.
^
=
^,.
..,.»(£»)•
Forbrevityweset
^,
t...Mn(B)
=
P
n
(B);
then, obviously
P
n
(B
n)
=?(A
n
)
^L>0.
IneachsetB
n
itispossibletofindaclosedboundedsetU
n
such
that
P»(B
n
-U
n)^-^.
Fromthisinequalitywehave
for
theset
theinequality
Let,
morever,
"
r
1*1ft•••f*H
V
"
P(A
n
-V
n
)^J-.
(5)
w
n
=
v
x
v
2
...v
n
.
From
(5)
itfollowsthat
P(A
n
-W
n)
g
€
.
Since W
n
cV
n
c:A
n
,
itfollowsthat
P(W
n
)^P(A
n
)-e^L-8.
Ife is sufficiently small,
P(W
n)
>
and
W
n
is not
empty. We
shallnowchooseineachsetW
n
apoint
£
U)
withthecoordinates
a» Everypoint
^
M
+^),
p
=
0, 1,2,
...
,
belongstothesetV
n
;
therefore
(*r
p)
.
*;r
p)
*<
n
.
+
»)
=
^....,.(f<»^»)
ct/„
.
SincethesetsU
n
areboundedwemay(bythediagonalmethod)
choosefromthesequence {£
(n)
}
asubsequence
for whichthecorrespondingcoordinates
*2?
tendforanyA:to
adefinite limit x
k
. Let, finally,
|
be a point in set£7 with the
coordinates
X
t*k
=
x
k
>
x,*=
0, /*
+
/**• £=1,2,3,...