32III.RandomVariablesoccur,i.e.^
=^,...,.»(£»)•Forbrevityweset^,t...Mn(B)=
Pn(B);then, obviouslyP
n(B
n)=?(A
n
)^L>0.IneachsetB
nitispossibletofindaclosedboundedsetU
nsuchthatP»(Bn-U
n)^-^.Fromthisinequalitywehavefor
thesettheinequalityLet,morever,"
r1*1ft•••f*HV"P(An-Vn)^J-.(5)w
n=
v
xv
2...v
n.From
(5)itfollowsthatP(A
n-W
n)
g€.Since WncVnc:An,itfollowsthatP(Wn)^P(An)-e^L-8.Ife is sufficiently small,
P(W
n)>and
W
nis not
empty. WeshallnowchooseineachsetW
napoint
£U)withthecoordinatesa» Everypoint
^M+^),p=0, 1,2,...
,belongstothesetV
n
;therefore(*rp).
*;rp)*<n.+»)=^....,.(f<»^»)ct/„.SincethesetsU
nareboundedwemay(bythediagonalmethod)choosefromthesequence {£(n)}asubsequencefor whichthecorrespondingcoordinates
*2?
tendforanyA:toadefinite limit xk. Let, finally,
|
be a point in set£7 with thecoordinatesXt*k=
xk>x,*=
0, /*
+/**• £=1,2,3,...