Foundations of the theory of probability

(Jeff_L) #1
32

III.RandomVariables

occur,i.e.

^

=

^,.

..,.»(£»)•

Forbrevityweset

^,

t...Mn(B)

=
P

n

(B);

then, obviously

P
n

(B
n)

=?(A
n
)

^L>0.

IneachsetB
n

itispossibletofindaclosedboundedsetU
n

such

that

P»(B

n

-U
n)^-^.

Fromthisinequalitywehave

for
theset

theinequality

Let,

morever,

"
r

1*1ft•••f*H

V

"

P(A

n

-V

n

)^J-.

(5)

w
n

=
v
x

v
2

...v
n

.

From
(5)

itfollowsthat

P(A
n

-W
n)
g


.

Since W

n

cV

n

c:A

n

,

itfollowsthat

P(W

n

)^P(A

n

)-e^L-8.

Ife is sufficiently small,
P(W
n)

>

and
W
n

is not
empty. We

shallnowchooseineachsetW
n

apoint
£

U)

withthecoordinates

a» Everypoint
^

M

+^),

p

=

0, 1,2,

...
,

belongstothesetV
n
;

therefore

(*r

p)

.
*;r

p)

*<

n

.

+

»)

=

^....,.(f<»^»)

ct/„

.

SincethesetsU
n

areboundedwemay(bythediagonalmethod)

choosefromthesequence {£

(n)

}

asubsequence

for whichthecorrespondingcoordinates
*2?


tendforanyA:to

adefinite limit x

k

. Let, finally,
|


be a point in set£7 with the

coordinates

X

t*k

=
x

k

>

x,*=
0, /*
+

/**• £=1,2,3,...
Free download pdf