34
III. Random
Variables
therandomvariablexisuniquelydennedexceptforequivalence.
Todeterminesucharandomvariablewe
set
limx
n
n oo
onA,andx— outsideofA.
We
have
toshowthatxisarandom
variable,inotherwords,
that
thesetA
(a) oftheelements£ for
whichx<a,belongsto5-But
A(a)=A<S<£>{x
n+p
<a}
incasea
^
0,and
A(a)=
,4©${*
n+p
<tf}
+
^"
n p
inthe
oppositecase,
fromwhich
our
statementfollows
at
once.
Ifthe probabilityof convergenceof thesequence (1) to x
equalsone,thenwesaythatthesequence
(1)
convergesalmost
surelytox.However,forthetheoryofprobability,anothercon-
ceptionofconvergence is possiblymoreimportant.
Definition.Thesequence
x
u
x
2
,
..
.
,x
n
,
..
'.'.
ofrandomvari-
ables convergesin
probability (converge
en
probability)
to
the
randomvariablex,ifforany£>0,theprobability
tendstowardzeroasn
—
oo
5
.
I.
If
thesequence
(1)
convergesinprobabilitytoxandalso
tox',
then
x
andx'areequivalent.Infact
sincethelastprobabilitiesareassmallaswepleaseforasuffici-
entlylargenitfollowsthat
p
|i*-*'i>y=°
andwe
obtainat
once that
P{x±X
'}^]?P{\x-X
'\>l
t
}
=0.
m
II.
//thesequence (1) almostsurely
convergestox,thenit
5
ThisconceptisduetoBernoulli; its completelygeneral treatmentwas
introducedbyE.E.Slutsky(see
[1]).