§
- AbsoluteandConditionalMathematicalExpectations 39
IX. If
(3)
holds for every set A of
gf,
then x and
y
are
equivalent.
Fromthe foregoingdefinitionof anintegralwealsoobtain
thefollowingproperty,whichisnotfoundintheusualLebesgue
theory.
X. Let
Pi
(A)andP
2
(A) betwoprobabilityfunctionsdenned
onthesamefield
%,
P
(
A)
=
P
x
(
A
)
+ P
2
(
A
\
andletxbeintegrable
onA
relative
toP
1
(A)
andP
2
(A).Then
jxP(dE)=^jxP
x
(dE)
+
jxP
2
{dE).
AAA
XL Everyboundedrandomvariableisintegrable.
§
- AbsoluteandConditional
MathematicalExpectations
Leta;bearandomvariable.Theintegral
E(x)
=
JxP(dE)
E
iscalledinthetheoryofprobabilitythemathematicalexpectation
ofthevariablex.FromthepropertiesIII,IV,V,VI,VII,VIII,
XI,itfollowsthat
I. |.E(*)|£E(|*|);
II.
E(y) gE(x) if ^
y
^xeverywhere;
III. inf
(x)^E(x)^sup (x)
;
IV. E(Kx+Ly)
=
KE(x)
4-
LE(y)
;
V. E
(2
x
n)
=
2
E
(*n)
»
iftheseries
2
E
(
I
*»l
)
converges
;
\n I
n n
VI. Ifxand
y
areequivalentthen
E(z) =E(2/).
VII. Every bounded random variable has
a mathematical
expectation.
Fromthe
definitionofthe integral, wehave
k=+oo
E(x)==lim^£raP{&m:^
#
<
(jfe.-f
1)
w}
&=—OO
=lim^rm{F((^+
l)m)
- F(£m)}.