Foundations of the theory of probability

(Jeff_L) #1
§


  1. AbsoluteandConditionalMathematicalExpectations 39


IX. If
(3)

holds for every set A of
gf,

then x and
y

are

equivalent.

Fromthe foregoingdefinitionof anintegralwealsoobtain

thefollowingproperty,whichisnotfoundintheusualLebesgue


theory.


X. Let
Pi

(A)andP
2

(A) betwoprobabilityfunctionsdenned

onthesamefield
%,


P

(

A)

=
P
x
(

A
)

+ P
2
(

A
\

andletxbeintegrable

onA


relative
toP
1

(A)
andP
2

(A).Then

jxP(dE)=^jxP

x

(dE)
+

jxP

2

{dE).

AAA


XL Everyboundedrandomvariableisintegrable.

§


  1. AbsoluteandConditional


MathematicalExpectations

Leta;bearandomvariable.Theintegral

E(x)

=

JxP(dE)

E

iscalledinthetheoryofprobabilitythemathematicalexpectation


ofthevariablex.FromthepropertiesIII,IV,V,VI,VII,VIII,


XI,itfollowsthat


I. |.E(*)|£E(|*|);

II.
E(y) gE(x) if ^
y

^xeverywhere;

III. inf
(x)^E(x)^sup (x)
;

IV. E(Kx+Ly)

=
KE(x)

4-
LE(y)
;

V. E

(2

x

n)

=

2

E

(*n)

»

iftheseries

2

E

(

I

*»l

)

converges

;

\n I

n n

VI. Ifxand
y

areequivalentthen

E(z) =E(2/).

VII. Every bounded random variable has
a mathematical

expectation.


Fromthe
definitionofthe integral, wehave

k=+oo

E(x)==lim^£raP{&m:^
#
<

(jfe.-f
1)

w}

&=—OO

=lim^rm{F((^+
l)m)


  • F(£m)}.

Free download pdf